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Abstract

OpenFlow based Network Intrusion Detection System (NIDS) is
designed to offer an efficient security mechanism via a Software
Defined Network (SDN). The network traffic received in the
dataplane of OpenV Switch is processed by matching traffic patterns
against the signatures stored in the database based on Bloom filter
(in approach-1) or Aho-corasick algorithm (in approach-2). NIDS
provides a robust, efficient and modular framework for filtering and
wnﬁguration in the data plane. j
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ﬁhe experimental setup comprises the minimal number of th

machines. OpenFlow controller acts as an administrator; it is named
as ‘Controller’ that comprises the configurations of NIDS signatures.

The machine placed at the center contains the OVS kernel module
(openvswitch.ko). Network traffic is captured via a hook that adds
additional processing. The NIDS control plane resides at the
userspace on this machine.

The PC marked as ‘Source’ generates data plane packets for testing.
All the data plane packets are destined to the PC marked as
‘Destination.” Packet generator client transmits packets from
‘Source’ and is destined to ‘Destination.’
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Gle experimental setup comprises previously described four machin&
along with multiple machines labeled a prefix ‘DS’. This architecture
offloads the signature pattern matching overhead from the OVS
dataplane to the distributed machines. The NIDS control plane more
or less remains the same.

The PCs marked as ‘DS1’ and ‘DS2’ are distributed processing
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machines. Malicious data traffic is still blocked by using OpenFlow’s

@W table. /

( Conclusion

networks.

Q Our design eliminates all possibile false positives.

* NIDS is modular. It consumes negligible data plane memory. It can be
scaled into a number of hardware configurations and different kinds of

( Future Work

\ time traffic.

*  Our implementation will be ported to hardware and introduced to real

~

* Dynamic threat identification — threats are currently identified based on
known signatures. In dynamic threat identification, we may analyze
network traffic based on network protocols and traffic activity patterns
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