D

1T

E-mail: sxr1043@rit.edu

OpenFlow based Network Intrusion Detection System

Student: Sujayyendhiren Ramarao Srinivasamurthi Adyvisors: Prof. Kaiqi Xiong and Prof. Minseok Kwon

Email: kxxics@rit.edu and jmk@cs.rit.edu

Abstract

OpenFlow based Network Intrusion Detection System (NIDS) is
designed to offer an efficient security mechanism via a Software
Defined Network (SDN). The network traffic received in the
dataplane of OpenV Switch is processed by matching traffic patterns
against the signatures stored in the database based on Bloom filter
(in approach-1) or Aho-corasick algorithm (in approach-2). NIDS
provides a robust, efficient and modular framework for filtering and
wnﬁguration in the data plane. j

Initial Test Topology

pc316.emulab.net:22
lexcl. raw-pc

=]| Pc233.emulab.net:22
excl. raw-pc
UBUNTU12-64-KVM

==3] pc301.emulab.net:22

) || excl. raw-pc
UBUNTU12-64-KVM
=> pc301

= Pc297.emulab.net:22

excl. raw-pc
UBUNTU12-64-KVM
=> pc297

ﬁhe experimental setup comprises the minimal number of th

machines. OpenFlow controller acts as an administrator; it is named
as ‘Controller’ that comprises the configurations of NIDS signatures.

The machine placed at the center contains the OVS kernel module
(openvswitch.ko). Network traffic is captured via a hook that adds
additional processing. The NIDS control plane resides at the
userspace on this machine.

The PC marked as ‘Source’ generates data plane packets for testing.
All the data plane packets are destined to the PC marked as
‘Destination.” Packet generator client transmits packets from
‘Source’ and is destined to ‘Destination.’

Exploring Networks
of the Future

OVS dataplane parallelized

OpenFIow‘Dataplane

OpenFlow Initialization

(i) All existing initializations
(ii) Create thread context Create Thread context
(iii) Initialize synchronization
parameters

STEP-2

Ingress from| O P ing
the network

A 4
Thread handler
(i) Wait on blocking call
(i) Receive signal

(i) Signal the thread N

(ii)Multiple pattern matching,
(i) Multiple pattern matching, bloom filter lookup
bloom filter lookup

wIm-n

(iii) Synchronize andproceed N~ (iv) Synchronize
Stepd

| Egress packets to the| Output packet processing
; network

Current Test Topology

pc208.emulab.net:22
excl. raw-pc
UBUNTU12-64-KVM
=> pc208

pc253.emulab.net:22
excl. raw-pc
UBUNTU12-64-KVM
=> pc253

DS1

1
Gbls pc271.emulab.net:22
excl. raw-pc
UBUNTU12-64-KVM
=>pc271

pc204.emulab.net:22
lexcl. raw-pc

UBUNTU12-64-KVM
=> pc204

1Gbls

pc228.emulab.net:22
excl. raw-pc

UBUNTU12-64-KVM
=> pc228

1Gbls

1Gb/s

pc257.emulab.net:22

pc353.emulab.net:22
excl. raw-pc excl. raw-pc

UBUNTU12-64-KVM UBUNTU12-64-KVM

=> pcas3 aEc2

Gle experimental setup comprises previously described four machin&
along with multiple machines labeled a prefix ‘DS’. This architecture
offloads the signature pattern matching overhead from the OVS
dataplane to the distributed machines. The NIDS control plane more
or less remains the same.

The PCs marked as ‘DS1’ and ‘DS2’ are distributed processing

Throughput
900
300+
713
700
E 619
=
= 600
= 537
= 500
[405
% 400
]
E._ 300
=]
< 2004
101
100
[u} T T T T T T T T
101 203 302 405 511 619 735 Ta7 792 793
Input data rate (in Mbps))
CPU usage
100
a0+
— 8|3_
% 70 72 73
= 70+ 65 65 67
E —
Y
=n
g
w
=
=
o
=]
@
=n
=
ES
=<
302 4!55 5i1 Gig ?éS ?é? ?’éZ 798

Input data rate (in Mbps))

machines. Malicious data traffic is still blocked by using OpenFlow’s

@W table. /

(Conclusion

networks.

Q Our design eliminates all possibile false positives.

* NIDS is modular. It consumes negligible data plane memory. It can be
scaled into a number of hardware configurations and different kinds of

(Future Work

\ time traffic.

* Our implementation will be ported to hardware and introduced to real

~

* Dynamic threat identification — threats are currently identified based on
known signatures. In dynamic threat identification, we may analyze
network traffic based on network protocols and traffic activity patterns

J

