GENI Measurements

Deniz Gurkan Mar 04, 2008

Questions

- What needs to be measured? And, what can be measured?
- How can the measurements be accessed or shared as a resource?
- How can archiving of measurements work?
- How can we deliver health and status monitoring?

Measurements in GENI

- Any standalone measurement instrument is a component in GENI (needs to have O&M and slice coordination)
 - Programmable measurements of e.g. a spectrum analyzer on a link, a BERT on a link, an end-to-end spectrum utilization, etc.
- Embedded measurements in substrate components are resources: their slicing will depend on the component's resources
 - E.g. attenuation, power flatness among WDM channels, etc.

Measurement Challenges

- Usually no interference between the measurement plane and the data plane is desired – or else use OMIS data.
- 2. Also, no interference between the IP infrastructure (that accesses and manages the components and resources) and the measurement plane is desired.
- 3. We need to figure out a way to make use of COTS instruments of today to emerge towards answering the future exotic measurement requests.
- 4. Programmability of measurements (using their Rspec as information on what they can do and how): access resources of measurements using the Rspec and then program an applicable configuration for a specific

Measurement Challenges cont.

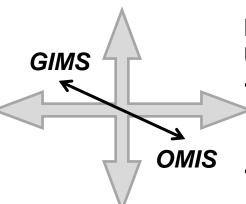
- Location of extensive measurement equipment will bias the experimenters towards research around those nodes leading to contention among resources.
- GIMS architecture has to be hand-in-hand with measurement plane to prevent any GENI interface problems later.
 - Maybe, we should work on a measurement standardization scheme for optical layer at the same time? This would be similar to a sensor network architecture.

Measurement Architecture

Privacy of user opt-in

Slice Coordination Among Users:

- Component manager
- Resource management

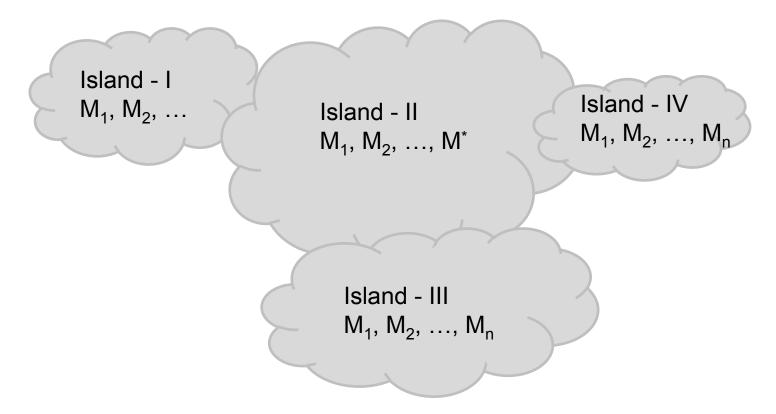

Rspecs for Instruments: Sensor → actuator

Test and Measurement Instruments:

- Different interfaces
- Stream, parameter, alarm
- Multiple users
- Service ←→ hardware
- Designed for current IP
 - clean-slate research?

 Complex Flexible

Sensor Networks


Devices (links, services) Under Test:

- End-to-end
 - processing intensive
 - intelligent output
- Link level measurements:
 - standalone or embedded
 - sensor output (raw)

Connection Requirements:

- Data plane and measurement plane
- Data archiving
- Component manager connections

Measurements and GENI Islands

Location of extensive measurement equipment will bias the experimenters towards research around those nodes leading to contention among resources.

Configuration of Measurements

- GENI has to have programmable (reconfigurable) measurement services:
 - Power attenuation and chromatic dispersion on a specific wavelength
 - BER of particular flows in wavelengths and in time
 - Spectral analysis of sources for varying transmission wavelengths
- Remote access of measurement configuration is key to the ease of use of GENI – since measurement plane is one of the key elements, it has to be easy to work with to be utilized by researchers: otherwise, it should die...

Measurement Instruments

Company	E/ S	Remote	What is measured?
Aegis Lightwave	E, S	Depends	λ monitoring
Lightwaves 2020	E, S	RS-232	λ monitoring
Apex Technologies	S	Ethernet	OCSA
Tempo	S	IEEE 488, GPIB	OTDR
Photonic Solution Inc	Е	?	power monitoring for ROADM
Axsun Technologies	Ε	RS-232, or other	spectrum monitoring for ROADM
Monitoring Division	S	various	in-band OSNR, impairments
Digital Lightwave	S	multi-user	Ethernet up to 40 Gbps
Capella	Е	RS-232	power OCSA: Optical Complex Spectrum Analyz
D. Gurkan JGR Services	E,	GPIB 2 nd GEC	insertion and redden to selone

Optical Layer Measurements and GENI

- Monitoring and all processing linked to the application
- Provide raw measurement reports
- Link by link measurements
 - BER
 - Wavelength channel quality
 - In-line hardware power penalty
 - Flow related
- End-to-end measurements
 - Packet loss rate
 - Hop count
 - Congestion
 - Buffering