Deploying and Operating a 100G Nationwide SDN WAN

Luke Fowler

<<u>luke@iu.edu</u>>

Background

- Network Development and Deployment Initiative (NDDI)
- INTERNET

- 10g x 6 NEC PF8520 nationwide network
- Advanced Layer 2 Service (AL2S)
 - 100G multi-vendor BTOP funded national network
- OESS
 - Dynamic circuit management with OpenFlow backend
- Virtualization: Want to support multiple OpenFlow apps (e.g. GENI apps)

Internet2 Network

OE-SS Software

- sub-second provisioning
- auto failover to backup paths
- 100% OpenFlow
- auto discovery of new devices and circuits
- IDCP support for inter-domain
- integrated measurement
- Open Source: http://globalnoc.iu.edu/sdn/oess.html

OE-SS HA Architecture

- controller is designed as a cluster
- corosync & friends
- multi-master mysql
- drbd

Initial Challenges

Timeframe

- 9 months for production code and deployed NDDI network
- 10 additional months to deploy AL2S network

Ecosystem

- OpenFlow largely untested
- brand new software stack
- Multiple Vendors with differing SDN implementations/capabilities

System Testing

- Automated_(mostly) test suite using Jenkins
- Programmable topology with glimmerglass
- Several test points
- 2 devices per vendor (including GENI iDREAM funded systems)
- test every new vendor or tool chain software release

Types of testing

General

- OFTest for general protocol adherence
- Implementation behaviors not mandated in spec

♣ OE-SS / Flowspace Firewall

- base functionality
- performance
- burn in / stability

Things we have seen

- flow_mod processing speed limits (improving over time!)
- incomplete OpenFlow spec support
 - layer2 or layer3 matching but not both
 - no viable QoS mechanisms
 - key actions not always supported
- inconsistencies in behavior
- Implementation bugs in early versions of network device's OpenFlow support (and bugs in our controller implementation!)
- Many of the problems have been "boring" / "traditional" e.g. hardware failures, backhoes, etc.

Controller Placement

- Primary Controller cluster in Chicago
 - hot standby with synched state (corosync and DRBD)
 - failover in cluster causes controller to switch reset
- Second redundant cluster in Bloomington
- controller to switch latency
 - 28ms RTT avg
 - 64ms RTT worst case

Controller Placement

- OE-SS mostly proactive, reacting to topology changes
 - heackup path preconfigured, failover involves 1 flow mod @ each ingress
 - controller takes ~70ms to receive a packet_down message and send a flow_mod in response.(some low hanging fruit here)
- -100ms to respond to failover assuming avg latency(ignoring time in switch)
 - Multiple seconds for IGP or Rapid Spanning Tree
 - MPLS path protect: ~100s ms
 - MPLS Fast Reroute: ~50 ms

Lessons

- ♣ The architectural simplicity of a central controller is very attractive
- Central controller means management net is *critical*, if a fiber cut disrupts management and OpenFlow net then OESS failover blocks on management net failover.
- If management net is resilient then, central location seem reasonable choice
- Distributed controller will still be heavily dependent on management network to respond to non-local events.

Lessons

- Expect to be the system integrator, inter-op is on you
- a dedicated test infrastructure is essential
- automation a *very* good investment
- make sure you can run concurrent tests if you have multiple vendors
- Don't use exclusively black box tests

Lessons

- OpenFlow is a youthful protocol, vague in places creating complexity as vendors get creative.
- No vendor supports all of the spec
- multi-vendor == lowest common denominator feature set
- need to test component together as system

What's Next?

- Planning underway to deploy Flowspace Firewall on AL2S.
- Supported as a production service
- \$\iinstyle{\text{NSO}}: early adopters to work with to get their SDN control apps running on the network.
 - Lab testing/verification with Internet2 NOC
 - Deployment on AL2S

