Virtual Topology Service

GEC 18

Agenda

- Audience
- Goals
- Architecture / How it Works
- How You Can Help!

Goals

- More Flexible Topologies
- DataPath Programmability
- Increased Visibility
- Standard Tools / Management Support
- Enable High Quality Research

Flexible Topologies

- GENI WAN Is Your Oyster
- Allow at least a full mesh of rack edges
 - Behind-the-scenes effort to avoid massive path oversubscription
- Some decision points in the "core"
 - More limited options, but useful in some topologies

Flexible Topologies

- Use any of a wide variety of DataPath implementations
 - OpenFlow (OVS, IVS, Linc, xDPD, etc.)
 - Cisco OnePK
 - Click
- Integrate Middleboxes as first-class members of your topology
 - BigIP, Checkpoint, etc.

Programmability

- Can optionally use an entirely custom datapath implementation
- Create and deploy extensions to existing datapath implementations, where possible (OF, etc.)
- Arbitrary dataplane pipelines
- Modern SDN control plane support
 - Distributed / HA / Failover

Increased Visibility

- All links in your topology can be tapped / monitored in isolation from other slices
- Full access to your datapath for debugging at code level
- No control plane proxy (FlowVisor, etc.)
- Access to underlying infrastructure utilization information across the time period of your slice

Standard Tools Support

- Direct access to monitoring data from your datapaths
 - sFlow/NetFlow
 - SNMP
- Can use NCM/SCM / NMS tools
 - Zenoss / Nagios / Hyperic
 - NetDisco / HyperGlance

Enabling Research

- IPv6, MPLS, FC
- End-to-End QoS, Flow Control
- Latest versions of OpenFlow
- Non-OpenFlow SDN Platforms
- Non-SDN Platforms

How It Works

- L2 Pseudowires and Virtual Machines
 - You can set this up now, but there's a lot of heavy lifting
- Some new core hardware coming online that has better slice isolation support

How It Works

- Aggregate managers and tools set up bridges and paths for you
- Paths created via:
 - Existing OpenFlow Core
 - DCN Aggregates (OSCARS, AL2S)
- Reasonable efforts will be made to provide backup paths and reduce primary path contention

Network Architecture

Network Architecture

 Experimenter defines the network graph that they want created using any vertex (rack, core resource) available in the system

Pseudowires

- Typically MPLS edge-to-edge
- Opaque to the core switching devices

Pseudowires

- We unroll the pseudowires at each experiment interface so your datapath implementation and hosts are directly exposed to your L2 of choice
- If your experiment uses bare metal there are some (mostly obvious) limitations

GENI Pieces

- Aggregate Manager at each site (rack) that supports pseudowire endpoints
- Request rspecs:
 - Specify simplex pseudowires
 - Datapath images to connect them to
- Labels are only locally unique
 - Avoids nasty coordination problems

Limitations

- You must (should) have a datapath at each site where you have compute resources
- You cannot (currently) specify the L1 path you want the pseudowire service to use
- You can't actually reserve any resources right now

Tool Writers!

- Topology creation / resource coordination will be a pain to do by hand (much like now)
- Documentation and rspec schemas will be available after GEC
- Beta deployment hopefully available before GEC19

