

ExoGENI Tutorial

Ilia Baldine <u>ibaldin@renci.org</u>

Tutorial sections

- Configure environment
- ExoGENI Ecosystem
- Flukes Overview
- Creating slices with Flukes
- ORCA and VM images
- Tutorial page:
 - http://groups.geni.net/geni/wiki/GEC15Agenda/ExoGENITutorial
 - Please open in your browser
 - Please open the presentation attached to the page

Goals of the tutorial

- Gain basic understanding of ExoGENI
- Gain basic understanding of the tools
- Learn how to build a variety of slices
 - Intra-rack
 - Inter-rack
 - Linked to NLR Mesoscale OpenFlow deployment
- Caveat: this is a complex distributed system and there are no guarantees. Things can and do fail. Be patient, ask for help.

Before you begin

- If you are planning to attend the GIMI tutorial tomorrow and want to use the same VM
 - Please take a snapshot in VirtualBox before you fire off the VM
 - At GIMI tutorial start from the snapshot version

Configuring your Environment

- VM login password: gec14user
- Your user id is gimiXX where XX is 01-30
- All Flukes user properties are under \$HOME/.flukes.properties – it is a text file
 - Edit \$HOME/.flukes.properties
 - Open in an editor
 - Follow the wiki page to make the modifications
 - http://groups.geni.net/geni/wiki/GEC15Agenda/ ExoGENITutorial
- Double-click on flukes.jnlp on your desktop to launch Flukes

Important!

- Note: several important steps have been skipped:
 - Acquiring GENI credentials from the GPO
 - Either as a PI or a participant in an existing project
 - Converting credentials into an Flukes-compatible form
 - See ExoGENI wiki
 - Signing up on the <u>geni-orca-users@googlegroups.com</u> to be whitelisted on ExxoGENI
 - See ExoGENI wiki

A word about keys/credentials

- There are two types of credentials typically used in GENI
 - GPO-issued credential an X.509 signed certificate confirming your identity
 - It can take several forms a .pem file, a .jks file, a .p12 file
 - Your private key is locked with a password
 - SSH keys are used to login to the provisioned nodes
 - The tools grab your public key from your home directory and install it into the nodes
 - Your private SSH key may or may not be locked with a password (it is in this tutorial)
- In this tutorial the passwords locking your private X.509 key and ssh key are the same
 - They don't have to be
 - The two are not related

Section: ExoGENI Ecosystem

ExoGEN Testbed

- Partnership between RENCI, Duke and IBM
- IBM x3650 M3/M4 servers
 - 48G RAM
 - Dual-socket 8-core Intel X5650 2.66Ghz CPU
 - 10G dual-port Chelseo adapter
- BNT 8264 10G/40G OpenFlow switch
- DS3512 6TB sliverable storage
- Each rack is a small networked cloud
 - OpenStack- and xCAT based
 - EC2 nomenclature for VM node sizes (m1.small, m1.large etc)
 - Baremetal node provisioning
 - Interconnected by combination of dynamic and static L2 circuits through regionals and national backbones

http://wiki.exogeni.net

ExoGENI Status

- 3 new racks deployed
 - RENCI, GPO and NICTA
- 2 more racks delivered, being configured
 - FIU and UH

Connected via BEN (http://ben.renci.org), LEARN and NLR FrameNet, (eventually I2)

ExoGENI slice isolation

- Strong performance isolation is the goal
- Compute instances are KVM based and get a dedicated number of cores (ExoGENI does not overprovision cores)
 - Currently all instances get 1 core (different RAM and disk).
- VLANs are the basis of connectivity
 - VLANs can be best effort or bandwidthprovisioned (within and between racks)
 - Current hardware in the racks allows best-effort VLANs only - will be remedied within a month

ORCA Overview

- ORCA is the control framework for ExoGENI
- Originally developed by Jeff Chase and his students at Duke
- Funded as Control Framework Candidate for GENI
 - Jointly developed by RENCI and Duke for GENI since 2008.
- A federation of networked clouds with a variety of interfaces
 - Native ORCA
 - GENI AM API
- Unique feature of ExoGENI: experimenter can
 - Operate on individual racks as <u>independent aggregates</u>
 - Operate on <u>entire testbed</u> and link racks together using ExoSM

ORCA deployment in ExoGENI

- Each rack runs its own Orca actor called the 'SM' that exposes
 - ORCA native APIs
 - GENI AM API
- Rack-local SM can only create slices with resources within that rack (virtual machines and VLANs)
- Special 'ExoSM' has global visibility
 - Has access to a fraction of resources resources in all racks
 - Has access to network backbone resources for stitching topologies between racks
- ExoSM
 - https://geni.renci.org:11443/orca/xmlrpc
- Rack SMs listed on wiki:
 - https://wiki.exogeni.net/doku.php?id=public:experimenters:orca_sm

Orca Deployment in ExoGENI

How are resources split?

- Resources in each rack are split between rack SM and ExoSM.
- Currently the split is 50/50 for VMs and internal VLANs between rack SM and ExoSM
- Baremetal nodes are usable only by ExoSM
- Stitching links from regional and national providers are delegated to ExoSM only.

Reasons to use ExoSM

- Simplicity
- Inter-rack slices
- Bare-metal nodes

Reasons to use rack SM

- Resource availability
- Single-rack experiments with VMs only

How do I use it?

- Request credentials through the GPO
- Build your own VM Image [optional]
- https://wiki.exogeni.net/doku.php?id=public:experimenters:images
- Define slice topology and submit request
 - Use either Omni or Flukes
- Maximum slice lifetime is 2 weeks

Section: Flukes Overview

- Graphical tool for creating and managing slice topologies in ORCA
 - JAVA (JNLP)

Section Overview

- Configuring Flukes prior to launch (DONE!)
- Launching Flukes
 - GUI Overview
 - Nodes, NodeGroups and Link parameters
 - Node-level vs. reservation level options
- Building slice request topologies
- Launching slice requests
- Inspecting slice manifests
- Logging into nodes in the slice
- NEuca-py tools

Flukes

- Permanent stable version link
 - http://geni-images.renci.org/webstart/flukes.jnlp
 - You can simply retrieve this file and either double-click on it (if you OS recognizes the file type) or launch it using 'javaws flukes.jnlp'
 - Oracle Java 6 recommended
- Can I use Flukes outside of ExoGENI?
 - No. Flukes uses semantic web mechanisms (RDF and OWL) to describe resources that is only compatible with ORCA and ExoGENI.
- Can I use GENI tools with ExoGENI?
 - Yes. You can use e.g. omni
 - See <u>https://geni-orca.renci.org/trac/wiki/orca-and-rspec</u> for conventions in using GENI RSpec in ExoGENI

GUI Overview

- Tabs
 - Resources, Request, Manifest
- Menus
 - Current properties
 - Overwriting properties (\$HOME/.flukes.properties)
- Adding nodes, nodegroups and links

Node and Link parameters

- Create a single node
- Right-click on the Node
 - Look at properties
 - Edit properties
 - Node type (size)
 - VM image
 - Domain (binding)
 - PostBoot script

- Right-click and open properties again
 - Specify IP address on the link
 - Node functional dependencies
- Right-click on links
 - Inspect and edit link properties
 - Note only bandwidth is currently respected (and not everywhere due to hardware limitations)
- Broadcast links
- Specifying vlan tags
 - Only 'special' shared tags can be specified

NodeGroup parameters

- Create a single unattached node group
- Right-click to inspect and edit properties
 - Group sizes
 - Splittable groups

Nodes and NodeGroups

- A Node is an individual compute element
 - Typically a VM or a hardware node
 - IP address(es) on links, size, image, site binding, post boot script
 - Can I control management IP address assignment? NO!
- A NodeGroup is a group of identically configured nodes
 - A lot like a node except
 - PostBoot script is templated using Velocity template engine
 - https://geni-orca.renci.org/trac/wiki/flukes
 - IP address assignment is semi-automatic (starting with a user-specified address)
 - Node groups can be splittable between sites
 - A node group that is too big for any site and that is not explicitly bound may be split across sites

What do I get when I ...?

- Create a standalone node?
 - You get a single compute element at one of the sites with a single network interface to the management network through which you can SSH into the node
 - Management interface is always eth0
- Connect two nodes together?
 - You get two compute elements each with two network interfaces – one for management access and one for the link between two nodes.
 - User-controlled interfaces start with eth1
 - You can control IP address assignment on the interfaces linking the two nodes (use RFC1918; suggested range: 172.16.0.0/16)

What do I get when I ...?

- Create a standalone NodeGroup?
 - You get some number of nodes (specified in the group size) each with a single interface to the management network (eth0)
 - Nodes typically will be within the same rack
 - If node group is marked splittable nodes may be split across sites
- Connect a node group to a node or another node group?
 - All nodes within the group and the adjacent node (or all nodes in both groups) have interfaces on a common VLAN. They also have management interfaces (eth0)
 - IP address is specified similarly to private VLAN
 - Beware of address clashes! (i.e. here is a piece of rope, feel free to shoot yourself in the foot)
- Connect a node group to a broadcast link?
 - You get a cluster with a dedicated Layer2 backplane.
 - You can assign IP addresses to interfaces in this backplane.

Can I tell which interface in the node will be eth1, eth2 etc?

- No, nor should you need to. Interfaces are identified by links they belong to.
- Note that different OSs name interfaces differently

Domain binding

- Binding refers to the selection of specific domains/sites/racks for parts of your slice
- Binding can be done on individual slice elements (nodes) or the entire reservation
- Unbound requests are automatically bound to domains with available resources.
 - This depends on the visibility of the SM.
 - ExoSM can bind to any rack
 - Rack SM will always bind to its rack
- Bound requests are honored if resources are available
 - To create an inter-rack request, bind some of the nodes in it to one rack, and others to another
 - Can only be done via ExoSM!

An Example – an inter-domain slice (RCI-BBN)

Attaching nodes to Mesoscale

- ExoGENI racks have layer 2 connections to NLR's OpenFlow MesoScale deployment
- Each rack attaches to it via a unique VLAN id
 - https://wiki.exogeni.net/doku.php?id=public:experimenters:resource_types:start
- To attach a VM or a baremetal node to a mesoscale VLAN, you need to
 - Decide which rack you will be using (your request must be bound)
 - Look up the VLAN id of mesoscale at this site (see URL above)
 - Create a topology with some number of nodes
 - Add a 'Broadcast Link'
 - Right-click on the broadcast link, select 'Edit Properties' and enter the tag in that 'Label/Tag' field
 - No QoS support on mesoscale vlans.

Example of attaching nodes to mesoscale

Reservation-level options

- Domain binding for the entire slice
- OpenFlow slice parameters can currently only be specified at reservation level
- Slice duration

Section: Creating slices with Flukes

Launch a slice

- Click 'File | New Request'
- Draw slice topology (nodes or groups)
 - Select m1.large size
 - Select image deb6–2g–zfilesystem
- Specify slice duration (click 'Edit Reservation') or binding
 - You can try binding to BBN XO Rack, RCI XO Rack or Duke CS
 - You can also let ORCA pick an available rack for you and leave the request unbound
- If you want to create a slice 'In the land Down Under'
 - Select 'https://nicta-hn.exogeni.net' under 'Orca Controllers'
 - Leave the slice elements unbound

Launch a slice

- Fill in slice name (must be unique, e.g. gimiXX)
- Click 'Submit Request'
 - Type in the alias of the key in the keystore ('gimiXX')
 - Type in the password [given to you]
 - 'OK'
- Inspect the output window
 - Mainly a debugging tool. Will go away in the future.

Inspect slice manifest

- Switch to Manifest tab
- Click on 'My Slices' and select your slice
 - Click OK to display manifest and reservation states
- Periodically poll 'Query for Manifest'
 - Inspect the states of reservations. 'Ticketed' means it is proceeding. 'Active' means it is ready
 - If you see 'Failed' you have a problem
 - Click on the reservation to see a detailed error message
 - Visit https://geni-orca.renci.org/trac/wiki/orca-errors
- Play around with layouts ('Graph Layout') to get something pleasing

ORCA and VM Images

VM images

- Creating your own image
- Specifying your own image for ORCA
- Regarding delays:
 - Images are downloaded and registered with the site at the time of slice creation
 - If you repeatedly use the same image and the site already has it, this step is skipped
 - Images may be cached-out causing longer delays (to download and re-register)
- Are there examples of known good images?
 - https://wiki.exogeni.net/doku.php?id=public:experimenters:images
 - Alternatively: http://wiki.exogeni.net, click on 'experimenters', then 'images'.

VM Images

Example image metafile

```
<images>
  
  
  
</images>
```

How does ORCA refer to an image

- URL of a metafile (can be same or different webserver as the image)
- SHA1 checksum of the metafile (to ensure it has not been modified)
- Workflow
 - Create filesystem, kernel, ramdisk
 - Place on some webserver
 - Take SHA1 signatures of each file
 - Generate metafile
 - Take SHA1 signature of metafile and its URL and add it to .flukes.properties or put it in Rspec

ORCA and VM images

- Can I put my image on your server?
 - Sorry, no.
- Will my image always remain cached at the racks?
 - No, depending on the use, your image may be cached out.
 - All this means is that sometimes you will experience a longer delay bringing up your slice

Building your own image

Will it always remain this complicated?

- Maybe. Building a valid OS image is still an advanced task.
- In many cases you can use post-boot scripts to automate the customization of your instances without modifying the OS image.
- We will be offering the use of an 'image playpen' facility – a separate installation of OpenStack with a convenient portal, where you can test and debug your images without trying them out directly on ExoGENI

Where to find information

- This is all too confusing. How will I ever be able to find all this information on my own?
 - All the information is linked to by the main ExoGENI experimenter page
 - http://wiki.exogeni.net, click on 'experimenters'

Back to manifests: Logging into nodes

- Right click on node in manifest
- Select 'Login to node'
 - In terminal window type in SSH key password, same as the key password you entered when you submitted the slice
- Inspect uptime\$ uptime
- Inspect the output of your boot script
- Inspect interfaces\$ ifconfig
- Try to ping node neighbors

NEuca-py tools

- Neuca-py tools are loaded in the image
 - They configure network interfaces at boot time
 - They execute the post boot script
 - An image without NEuca tools will do neither of those things
 - · You can still configure interfaces manually
- Allow you to inspect the VM configuration
- Run 'neuca' to get the list of neuca tools \$ neuca
- Run 'neuca-user-data'
 - Note your boot script
- If you create your own VM image you are strongly encouraged to install NEuca tools on it
 - Visit <u>https://geni-orca.renci.org/trac/wiki/NEuca-guest-configuration</u> for instructions

OpenFlow slices on the racks

- You can start an OF controller on some publically reachable host (it can be a singlenode slice in ExoGENI)
- You can create a slice topology and point ORCA to your controller
 - Under 'Reservation Details' in Request pane, select 'OpenFlow reservation' and fill in the details of your controller
- When your slice is created, vlans in it will be under the control of your controller

OpenFlow slices and mesoscale

- You can use FOAM controller in each rack to create an OpenFlow slice
- You can get compute nodes attached to the mesoscale VLANs in each rack using ORCA (Flukes or Omni)
- Put the two together and you have a mesoscale OpenFlow slice

What is coming to ExoGENI in the next 2–4 months?

- Upgrade to OpenStack Essex
 - Support for QoS in slice links will be back
 - Better stability
 - Being tested now, will begin early deployment immediately following the GEC
- Image playpen
 - To help experimenters create custom images faster
- More racks
 - UH and FIU racks are in place, being configured
 - More racks will be coming in 2013.
- New firmware for rack backplane switches
 - Improved QoS support, better scalability

Thank you for attending the tutorial!

- More ExoGENI information
 - http://www.exogeni.net
- More Orca information
 - http://geni-orca.renci.org