Curriculum Workshop Report

Jeannie Albrecht

Williams College

http://www.cs.williams.edu/~jeannie/nsf-workshop/index.html http://groups.geni.net/geni/wiki/GECI4Agenda/Curriculum

Challenges

- Distributed systems provide many advantages
 - Improved scalability, fault tolerance, response time, etc
 - Widely used by many major companies
- Developing, debugging, deploying distributed systems introduces new challenges
 - Can be overwhelming to new developers
- Students benefit from the opportunity to design, implement, deploy, and evaluate *real* systems in *real* environments
 - Learn techniques for coping with common challenges

Overcoming Limitations

- Unfortunately undergraduate curriculums rarely offer Distributed Systems courses
 - Students are not fully prepared for jobs/grad school
- Many small colleges and some universities do not have the local computing resources required for large-scale experimentation
- Options are mainly small-scale emulation and simulation, which have advantages, but are not always realistic

Advancements in Technology

- New options have appeared in last decade
- There are now many public testbeds available
 - Developers can "rent" Amazon, Google, and Microsoft resources
 - Shared platforms like GENI provide a variety of deployment options
- Role of MOOCs (Massively Open Online Courses)

Workshop Goals

- (Re)Define undergraduate distributed systems educational goals
- Discuss ways to integrate new technologies with classic concepts
- Leverage availability of public testbeds to give students at a variety of institutions hands-on experience with the development and analysis of distributed systems

Session I – Platforms

- Getting access, managing student accounts, how to use in classroom, etc.
 - Justin Cappos (NYU Poly)
 - Seattle platform and testbed
 - Gary Wong (Univ of Utah)
 - Emulab and ProtoGENI
 - Armando Fox (UC Berkeley)
 - Amazon EC2 and other cloud-based technology
 - Jeff Chase (Duke Univ)
 - ExoGENI and ORCA

Session 2 – Educator Experiences

- Assignments, textbooks, etc., primarily used in small colleges and universities (undergraduate level)
 - Jeannie Albrecht (Williams College)
 - Distributed Systems
 - Joel Sommers (Colgate University)
 - Computer Networks
 - Tia Newhall (Swarthmore College)
 - Parallel & Dist Computing
 - Zongming Fei (Univ of Kentucky)
 - Networks & Dist OS/Calvin College Emulab

Session 3 – Educator Experiences

- Assignments, textbooks, etc., primarily used in large universities (ugrad and grad level)
 - Armando Fox (UC Berkeley)
 - Massively open online courses (MOOCs)
 - Sonia Fahmy / Ethan Blanton (Purdue)
 - GENI-based classroom exercises
 - Anish Arora (The Ohio State)
 - Projects designed for local/remote sensor testbeds/kits
 - Mark Berman (BBN/GENI)
 - Sample assignments designed for GENI

Common Themes: Learning Strategies

- Favor breadth over depth
 - Introduce students to a variety of technologies
- "Learn by doing"
 - Give students hands-on experience with deploying, debugging, analyzing distributed systems
- Development is not enough
 - Teach students about experimentation/evaluation/analysis
- Understand low level details
 - Students need to understand how things work at the socket level (at least)
 - Higher level languages (i.e., Java, Python, etc) greatly simplify development, but hide some details

Common Themes: Course Structure

- Textbooks provide good background knowledge, but students also benefit from reading research papers
- Emphasize scientific/technical writing in addition to code development
- Short/well-defined labs and assignments early in semester help students gain necessary background
- Open-ended/independent final projects allow students to explore and innovate on topics that they find interesting

Common Themes: Integrating New Technology

- Giving students experience with heterogeneous/ wide-area network conditions is important
 - But debugging in wide-area is challenging and frustrating, especially for students
 - Students have tendency to (often incorrectly) blame testbed when things don't work
- Important to let students work with a variety of resources in different environments
 - External resources (i.e., GENI) are very valuable for small colleges and large universities

Common Themes: Skills and Concepts

- Specific things students should know:
 - How to use a Makefile
 - Revision control
 - Debugging tools (gdb, valgrind, etc)
 - Scripting
 - Latex
 - Gnuplot/scriptable graphing software
 - Threads
 - Sockets

Conclusions

- Hard to reach consensus (at this point) on how undergrad Dist Sys course should be structured
 - Student backgrounds vary widely (i.e., different prerequisites, different levels of competency, etc.)
 - Some courses cover Parallel and Distributed Computing, some cover Networks and Distributed Systems, etc.
- Goal: Identify a set of modules/assignments that can be integrated into undergraduate courses
 - Allow instructors some personal freedom while also providing some curricular consistency
 - Low overhead assignments that can be easily inserted into existing curriculum

Conclusions

- Building real systems on real (wide-area) networks are important skills for students (especially undergraduates)
 - Testbeds (i.e., GENI) are critically important to achieving this!
 - ...but GENI is still intimidating to educators (simplicity is key!)
- What can we do to make GENI less scary?
 - Minimize adoption hurdles need "tried and true" tutorials/ modules for both educators and students
 - Minimize management overhead for instructors (we are generally pretty busy) and minimize student frustration/ confusion
- Reach out to educators at non-GENI events