

ExoGENI Racks status update

Ilia Baldine <u>ibaldin@renci.org</u> Chris Heermann <u>ckh@renci.org</u> Jonathan Mills <u>jonmills@renci.org</u> Victor Orlikowski <u>vjo@cs.duke.edu</u>

ExoGENI Overview

ExoGEN Testbed

- 14 GPO-funded racks
 - Partnership between RENCI, Duke and IBM
 - IBM x3650 M4 servers (X-series 2U)
 - 1x146GB 10K SAS hard drive +1x500GB secondary drive
 - 48G RAM 1333Mhz
 - Dual-socket 8-core CPU
 - Dual 1Gbps adapter (management network)
 - 10G dual-port Chelseo adapter (dataplane)
 - BNT 8264 10G/40G OpenFlow switch
 - DS3512 6TB sliverable storage
 - iSCSI interface for head node image storage as well as experimenter slivering
- Each rack is a small networked cloud
 - OpenStack-based
 - EC2 node sizes (m1.small, m1.large etc)
 - http://www.exogeni.net

ExoGENI Status

- 3 racks deployed
 - RENCI, GPO and NICTA
- 2 existing racks (not yet OpenFlow enabled)
 - Duke and UNC
- 2 more racks available by GEC14
 - FIU and UH
- Connected via BEN (http://ben.renci.org), LEARN and NLR FrameNet
- Partner racksU of Alaska Fairbanks

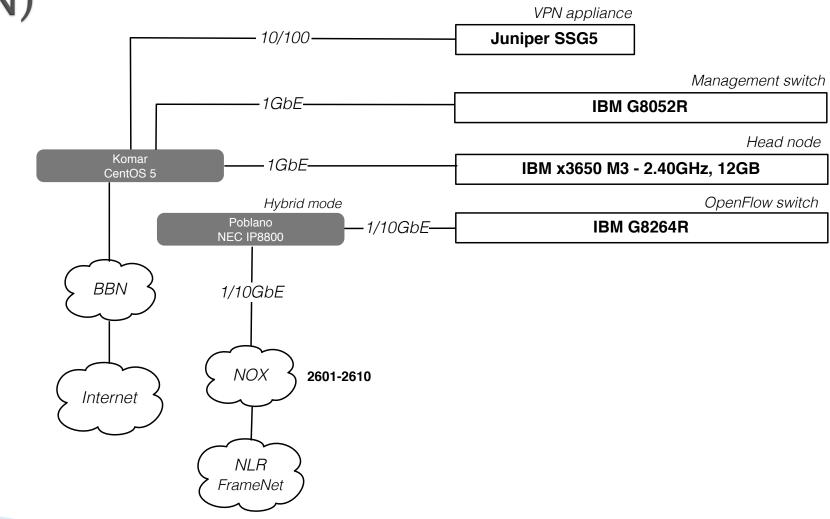
Since GEC13

- Added ability to provision baremetal nodes
 - Via xCAT
- Added ability to attach VMs or baremetal nodes to mesoscale VLANs available at rack sites
- Monitoring channel from Nagios to GMOC
- Improved GENI AM API implementation with help from GPO
- Still Working on
 - Acceptance tests
 - Bringing ORCA closer to GENI AM API compliance (primarily RSpecs)
 - Providing slice information to GMOC to have correlate resource provisioning with slices/users/projects

ExoGENI unique features

- ExoGENI racks are separate aggregates but also act as a single aggregate
 - Transparent stitching of resources from multiple racks
- ExoGENI racks are targeted at computing applications as well as experimentation
 - Already running HPC workflows linked to OSG and national supercomputers
 - Strong performance isolation is one of key goals
- A model for deeply reconfigurable federated compute/storage/network infrastructure for campuses and labs.

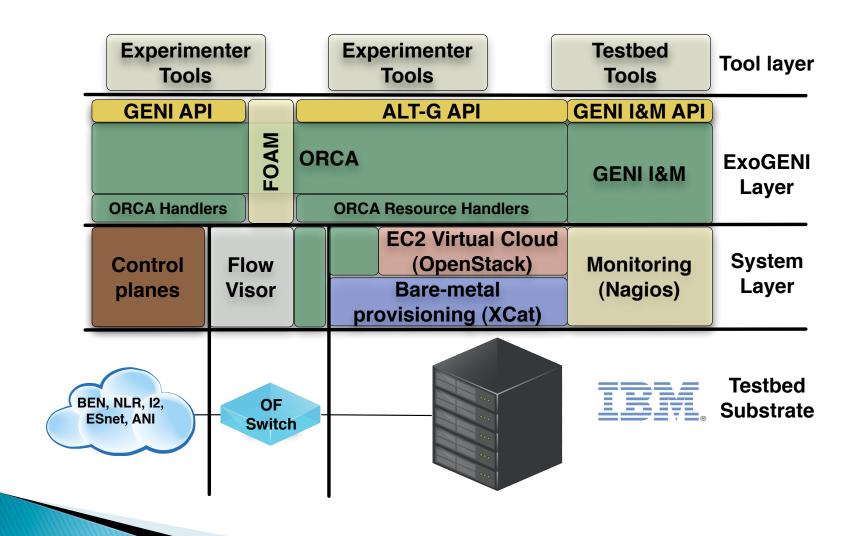
ExoGENI details


Rack Connectivity

- Rack has a <u>management</u> connection to campus network
- A connection to FrameNet or I2 ION
 - Direct peering
 - Via a pool of vlans with static tags through a regional
- It may have an optional connection to the OpenFlow campus network for experiments

Rack IP address assignment

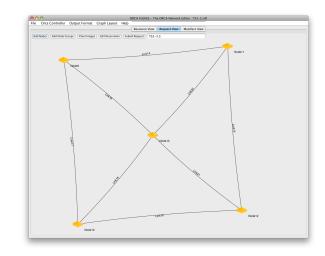
- /24 of publicly routable IP addresses is the best choice
- 2 are assigned to elements of the rack
 - Management/Head node
 - SSG5 VPN appliance (to create a secure mesh for management access between racks)
- The rest is used to assign IP addresses to experimenter instances
 - VMs and hardware nodes

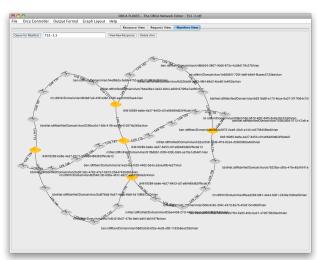

Example rack connection (GPO/BBN) VPN appliance

Rack software

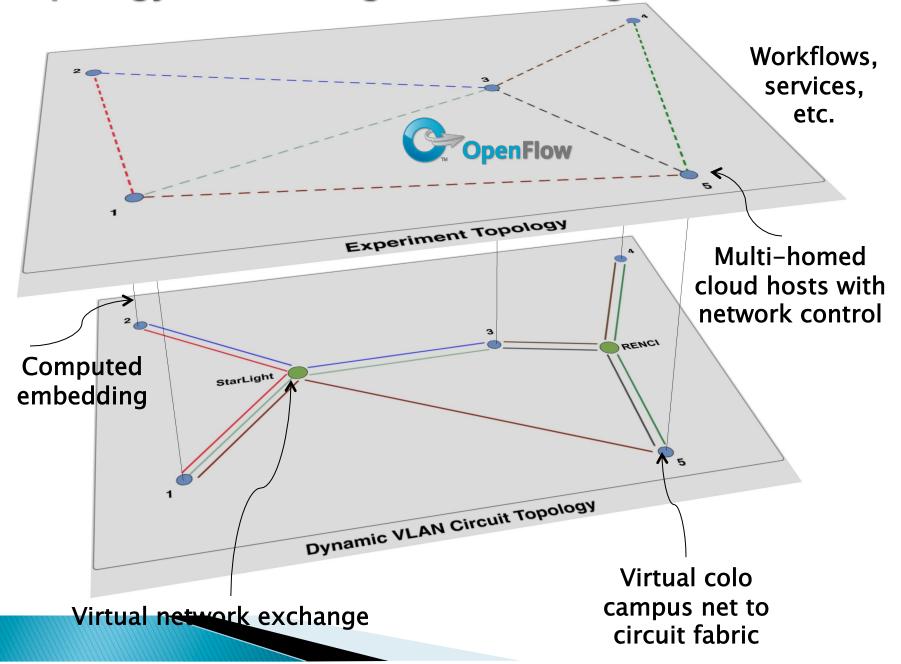
- CentOS 6.X base install
- Resource Provisioning
 - xCAT for bare metal provisioning
 - OpenStack + NEuca for VMs
 - FlowVisor
 - NOX used internally by ORCA
- GENI Software
 - ORCA for VM, baremetal and OpenFlow
 - FOAM for OpenFlow experiments
- Worker and head nodes can be reinstalled remotely via IPMI + KickStart
- Monitoring via Nagios (Check_MK)
 - ExoGENI ops staff can monitor all racks
 - Site owners can monitor their own rack
- Syslogs collected centrally

Rack Software Stack

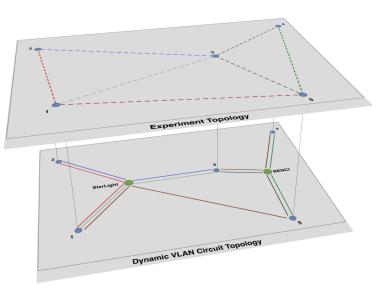

Rack installation


- Particulars:
 - Power options include (negotiated ahead of time)
 - 208V 3Phase
 - 208V 1Phase
 - 120V 1Phase
 - Total of ~10kW of power needed.
 - Space:
 - e1350 42U Rack Cabinet 79.5" H x 25.5" W x 43.5" D (2020 mm x 648 mm x 1105 mm)
- Racks arrive on-site pre-assembled and pre-tested by IBM with most software already pre-installed
 - IBM representative will need to come on-site to complete install and hookup
 - NBD hardware support
 - ExoGENI Ops finishes ORCA configuration
 - GPO acceptance testing

ExoGENI experiments


Experimentation

- Compute nodes
 - Up to 100 VMs in each full rack
 - A few (2) bare-metal nodes
- True Layer 2 slice topologies can be created
 - Within individual racks
 - Between racks
 - With automatic and user-specified resource binding and slice topology embedding
 - Dynamic circuit services (Sherpa, OSCARS) called where available
- OpenFlow experimentation
 - Within racks
 - Between racks
 - Include OpenFlow overlays in NLR (and I2)
 - On-ramp to campus OpenFlow network (if available)
- Experimenters are allowed and encouraged to use their own virtual appliance images



Topology embedding and stitching

ExoGENI slice isolation

- Strong isolation is the goal
- Compute instances are KVM based and get a dedicated number of cores
- VLANs are the basis of connectivity
 - VLANs can be best effort or bandwidth-provisioned (within and between racks)

ORCA control framework

ORCA Overview

- Originally developed by Jeff Chase and his students at Duke
- Funded as Control Framework Candidate for GENI
 - Jointly developed by RENCI and Duke for GENI since 2008.
- Supported under several current NSF and DOE grants to enable ORCA to run computational networked clouds
- Fully distributed architecture
- Federated with GENI
- Supports ORCA-native interface, resource specification and tools
 - Flukes
- Supports GENI AM API and GENI Rspec
 - Omni

ORCA Deployment in ExoGENI

- Each rack runs its own ORCA actor (SM) that exposes
 - ORCA native API
 - GENI AM API
- Rack-local SM
 - Can only create slice topologies with resources within that rack
- 'ExoSM' has global visibility
 - Has access to resources in all racks
 - Has access to network backbone resources for stitching topologies between racks
- Uniquely ExoGENI racks act both as
 - Independent GENI aggregates
 - A <u>collective aggregate</u> with intelligent topology embedding and stitching via dynamic or static circuits (NLR, ESnet, I2)

The team

- Grand Pooh-bah Jeff Chase
- ExoGENI Ops
 - Chris Heermann (RENCI) rack networking design
 - Victor Orlikowski (Duke) software packaging and configuration
 - Jonathan Mills (RENCI) operations and monitoring
- ORCA Development
 - Yufeng Xin (RENCI)
 - Aydan Yumerefendi (Duke)
 - Anirban Mandal (RENCI)
 - Prateek Jaipuria (Duke)
 - Victor Orlikowski (Duke)
 - Paul Ruth (RENCI)