A Tutorial Introduction to GENI WiMAX

13th GENI Engineering Conference Los Angeles, California

> Thanasis Korakis, Fraida Fund 14 March 2012

Part 1: GENI WiMAX Overview

- Why GENI WiMAX?
- WiMAX Testbed Tour
- GENI WiMAX Base Station
- Other tools
- GENI WiMAX Testbeds Open to Experimenters
- Resources and Support

Why GENI WiMAX?

Wireless is an essential part of the next-generation Internet.

By 2015, global mobile data usage is predicted to reach **6.3 exabytes/ month** over **7.1 billion** mobile devices

We need research to:

- Address issues specific to mobile and multi-homed devices
- Develop new ideas for maximizing the performance of IP-based broadband wireless access networks
- Evaluate existing and proposed networking protocols over new and old wireless networks

Hardware Components:

- Each testbed node is a PC equipped with
 - VIA Esther processor 1GHz
 - 40GB Hard disk
 - Atheros 802.11 a/b/g Wireless Network Adapter
 - Intel Centrino Advanced-N + WiMAX 6250 Wireless Network Adapter
 - 100BaseT Ethernet port for experiment control
 - Chassis Manager card for resetting node
- Servers to support various experimenter services

Software Components:

- Web-based interface for reserving resources
- Experiment Control using OMF
 - OMF is a platform to support rigorous and repeatable experimentation
 - Provides an unambiguous way to describe and instrument an experiment, enabling repeatability
 - One OMF experiment can run on any GENI WiMAX testbed with minimal modification
- Instrumentation and Measurement using OML
 - Measurements are saved in a standard database format for easy manipulation and analysis
 - Store measurements and metadata in one place

Exploring Networks of the Future

GENI WiMAX Base Station

- Open/programmable base station node
- Experimenters can reserve the base station for their experiments
 - Eliminate the uncertainty associated with competing traffic, carrier policies, and other problems that come with using a commercial network for wireless research

GENI WiMAX Base Station

- The WiMAX base station uses an external PC controller that runs Linux.
- We use the ORBIT Management Framework (OMF) software to interface the base station to other parts of the GENI network.

Other tools we provide

- Common applications instrumented with OML for use in OMF/OML experiments, e.g.
 - VLC media player
 - Iperf
 - HTTP server
- Tools for recording experiment state and metadata
 - Script for saving base station configuration to OML database – keep configuration and experimental measurements in one place

GENI WiMAX Sites Open to Experimenters

 Two GENI WiMAX sites currently operate open-access testbeds, with more coming soon:

WINLAB: http://orbit-lab.org

NYU-Poly: http://witestlab.poly.edu

Resources and Support

- Documentation, tutorials, software tools
 - http://witestlab.poly.edu (NYU-Poly Testbed)
 - http://wimax.orbit-lab.org (GENI WiMAX)
 - http://mytestbed.net (OMF)
- Support
 - witestlab@poly.edu (NYU-Poly Testbed)
 - orbit-user@orbit-lab.org (WINLAB Testbed)
 - omf-user@lists.nicta.com.au (OMF)

Next

- Guided hands-on tutorial
 - (Registration: http://witestlab.poly.edu/index.php/tutorials/26-registration.html)
 - (Reservation: <u>http://witestlab.poly.edu/index.php/tutorials/25-reservations.html</u>)
 - Start an experiment: <u>http://witestlab.poly.edu/index.php/tutorials/27-starting-an-experiment.html</u>
 - Basic WIMAX RSSI experiment: <u>http://witestlab.poly.edu/index.php/tutorials/28-4-basic-wimax-rssi-experiment.html</u>
 - Iperf broadcast receiver experiment: <u>http://witestlab.poly.edu/index.php/tutorials/29-5-iperf-udp-broadcast-receiver-experiment.html</u>
 - Saving BS configuration to OML <u>http://witestlab.poly.edu/index.php/tutorials/31-6-saving-bs-config-to-oml.html</u>
 - Varying modulation and coding experiment <u>http://witestlab.poly.edu/index.php/tutorials/30-7-varying-modulation-and-coding-experiment.html</u>

Wrap up

- What did we learn today:
 - Remote access to the GENI WiMAX tesbted (registration)
 - Reserve the testbed for experimentation (scheduler)
 - Configure the parameters of the BS / Initiate an experiment
 - Build and execute an experiment (using OMF)
 - Define measurement points (using OML)
 - Conduct experiments measuring signal strength
 - Conduct experiments, generating traffic and measuring throughput, packet loss
 - Collect measurements and observe them though the OML visualization service
 - Saving BS configuration with the measurements of the experiment
 - Varying modulation and coding schemes during the experiment

Range and Throughput Experiments

Bittorrent Peers

- To gather throughput statistics, we used Bittorrent rather than traditional network testing tools (e.g. *iperf*)
 - Behavior of a TCP flow, as measured by *iperf*, gives pessimistic picture of network performance: link under-utilization, poor recovery from loss, highly variable results between *iperf* trials, and overall degraded end-to-end performance. Each measurement point takes some time to collect, so this tool is not suitable for taking hundreds of measurement points over a wide area.
 - Bittorrent uses multiple parallel connections to maximize link utilization, and DL and UL speeds stabilize quickly as link quality changes while we move throughout the coverage

Range and Throughput Experiments

Develop WiFi/WiMAX schemes

Cooperative recovery though heterogeneous networks

Develop WiFi/WiMAX schemes

 Cooperative recovery though heterogeneous networks (implementation solution)

WiMAX Measurement Framework

Using software defined radios

Thank You!

http://witestlab.poly.edu

