ToMaTo - a network experimentation tool

Dennis Schwerdel!, David Hock?, Daniel Giinther', Bernd Reuther®, Paul
Miiller! and Phuoc Tran-Gia?

! Integrated Communication Systems Lab, University of Kaiserslautern, Germany
{schwerdel,guenther,reuther,pmueller}@informatik.uni-kl.de
2 University of Wiirzburg, Germany
{david.hock,trangia}@informatik.uni-wuerzburg.de

Abstract. Networks are an important field of research in information
technology and experimental facilities are key instruments to enable prac-
tical research in this area. In the context of the German-Lab project, the
topology management tool “ToMaTo” has been developed to be used as
experimental facility software. This paper describes the features and the
design of ToMaTo and evaluates it by identifying common experiment
types and matching their requirements to the properties of ToMaTo.

1 Introduction

The Internet has a large economic influence but is based on legacy mechanisms
and algorithms from the 70’s and 80’s. The rapid evolution of applications and
transport technologies demands for changes even of core technologies of the
Internet. A lot of research work has been done on improving isolated aspects of
the Internet but in the last years also a lot of holistic research efforts investigate
concepts and technologies for future networks in general|7].

All of these research projects need ways to evaluate their ideas and results.
In the beginning of the projects, theoretical models and simulations might be
sufficient but at some stage a more realistic environment is needed. Real net-
works and real hardware show unforeseen effects that cannot be modeled. New
protocols and architectures will have to work with legacy components, i.e. cur-
rently widespread hardware and software, which have often unpublished behavior
details.

Experimental facilities aim to provide a realistic environment for experiments
using emulation techniques. In experimental facilities, there is always a trade-
off between realism, concurrency and repeatability. Realistic environments show
unforeseen and random effects that cannot be repeated. To be able to run concur-
rent experiments on the facility, the access of each experiment must be restricted
to sharable or virtualized resources which in turn limits the realism.

A lot of software for experimental facilities has been developed and each one
works at a certain level of realism, concurrency and repeatability. The German-
Lab experimental facility allows its researchers to choose from various experimen-
tal facility software. An experimental facility software called Topology Manage-
ment Tool (ToMaTo) has been developed in the German-Lab project. ToMaTo

allows researchers to create virtual network topologies populated by virtual nodes
running standard software.

This paper describes the ToMaTo software and compares it to other experi-
mental facility software. Section 2 gives an overview of other experimental facility
software and comparable solutions. The design of ToMaTo is described in section
3. Section 4 evaluates the design by identifying common experiment types and
outlining the support for these experiments in ToMaTo. Section 5 concludes the
work and mentions future work on ToMaTo.

2 Related work

Network experimentation tools like VIRCONEL[4] and the Common Open Re-
search Emulator (CORE)|2| can setup and control virtual machines connected by
a virtual network topology. Both tools use virtualization to run multiple virtual
computers on a physical host and they use tunnels to create a virtual network
topology. CORE also allows to configure emulated link characteristics. CORE
and VIRCONEL were created to allow a single user to setup an experiment, so
they lack the ability to handle multiple users or multiple concurrent experiment
topologies. They have additional limitations when used across multiple hosts.

On the other hand there are network research testbeds that allow multiple
researchers to run experiments concurrently. The most well-known of them is
probably Planet-Lab[8], which uses a container-based virtualization to run mul-
tiple virtual computers on a single host. Planet-Lab has a very large number of
distributed hosts and thus is well-fitting for peer-to-peer experiments. Due to
its container-based approach, Planet-Lab cannot support kernel-space modifica-
tions or other operating systems. Originally Planet-Lab does not offer any way
to its users to configure the network topology. An extension called Vini tries to
improve in this area but the container-based virtualization technology and high
distribution of the hosts pose limits on that.

Another well-known testbed is Emulab[10]. Emulab is a highly heterogeneous
testbed with wifi and radio components as well as distributed nodes but the
core is a computing cluster that allows users to boot custom software on the
cluster nodes and connect them with virtual network topologies provided by
dedicated hosts. This setup allows researchers to access actual hardware and the
virtual networks offer high bandwidth. On the other hand the testbed design
does not support distribution of physical hosts and efficiency is low because all
experiments use real hosts as no virtualization is used.

Seattle[5] is a novel peer-to-peer testbed mainly targeted towards network
algorithm testing. The testbed software consists of a custom python interpreter
and management modules, spread across the world by volunteer computing.
Users can run algorithms written in a custom python dialect on virtual machines
across the testbed. Since Seattle only supports software that has been written
in its custom python dialect, it is not capable to run any existing software.

Wisebed[3] and the DES testbed|1] are specialized experimental facilities for
sensor networks and wireless networks. Their design is mostly defined by the

special needs of the hardware. Virtualization and distribution is limited by the
capabilities of the physical hosts.

ToMaTo’s goal is to overcome limitations found in experimental facility soft-
ware so that the user has maximal flexibility for his experiments. ToMaTo allows
its users to configure and use multiple concurrent network topologies. It also
aims to allow lightweight virtualization and full operating system access for the
experiments.

3 ToMaTo design

The goal of ToMaTo is to enable users to cre-
ate and use network topologies for their ex- i
periments. A network topology consists of two a@.
types of components. Devices are active com-
ponents like computers that run the software .;55‘“"1
of the experiment and are the only sources and |

sinks of data. Connectors are network compo-
nents that connect devices and transport their
data exhibiting certain configurable charac-
teristics. Figure 1 shows a topology with four

client devices, one server device, two switch connectors and one internet connec-
tor.

clientd

clientl

Fig. 1. Example Topology

3.1 Architecture

ToMaTo uses virtualization technolo-

gies to allow experiments to run

concurrently in isolated environments
spanning parts of the experimental fa- "
cility. ToMaTo consists of three mod-
ules, the host system, the central
back-end and the web-based front-end
(http://tomato.german-lab.de) as shown
in figure 2. The host system runs on Fig. 2. ToMaTo structure

all hosts of the experimental facility

and offers virtualized resources to be

controlled by the central back-end. The host hypervisor consists of a Linux op-
erating system with the following additional components installed:

= ./
Facility Hosts

a

Web-Frontend Backen

VNC, SSH, etc.

— PROXMOX VE! as virtualization tool for virtual machines
— Tinc? as virtualization tool for virtual networks
— Dummynet[6] as link emulation tool

' PROXMOX VE is a product of Proxmox Server Solutions GmbH, see
http://pve.proxmox.com
% Tinc is a VPN software project by Tilburg university, see http://tinc-vpn.org

The host component allows the central back-end to configure and control these
tools via a secure communication channel. This back-end is realized as a central
component to allow easy resource management. It distributes the virtual ma-
chines evenly across the physical hosts to balance the load on those hosts. To
keep the host environment as simple as possible the back-end contains all pro-
gram logic and uses a secure communication channel to execute commands on
the hosts. The back-end also manages user authentication and authorization and
provides very basic accounting. Using an LDAP3 server, existing user accounts
can be easily integrated into the back-end.

& German Lab

“« C M X heepStomato.german-lab.dejtopjcreate

TO Ma TO Topologies Admin Help
——
e Topology management tool
Topologies Creation of new topology
Editor help

& create new topology
& import xmlkspec fLE B Topoloay properties
‘ list of all topologies Openz name:

;LEI B Link properties

KM bandwidth{kb/s):

10000
= ||:I latency(ms):
Internet serder o
= default
Hub loss rate(0.0-1.0):

0.0
default
Switch Gwiteh Ll capture packets

o

clientl client2

e @

trash

A

Creator

‘ Copyright & 2010 University of Kaiserslautern, on behalf of the German Lab, see license page for detail

Fig. 3. Graphical topology editor

The back-end offers an XML interface to be used by front-end tools. Currently
only one front-end exists, but the API is generic enough to allow other front-
ends as well. The main ToMaTo front-end consists of a website that allows users
to create and edit their topologies using a graphical editor and to manage the
topologies, devices and connectors. Figure 3 shows the ToMaTo website including
the graphical editor, which is described in subsection 3.4.

3 Lightweight Directory Access Protocol

+| | German Lab | Jtestl -kvml &3

The programs included with the Debian GNU-sLinux system are free software:;
the exact distribution terms for each program are described in the
individual files in susrrssharesdoc/=scopyright.

Debian GNU-/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
debian-i386:7# ifconfig ethB 18.1.1.2 netmask 255.255.255.8 up
debian-i3B6:7# ping 168.1.1.1
PING 18.1.1.1 (18.1.1.1) 56(84) bytes of data.
64 bytes from 18 1.1: icmp_seq=1 tt1=64 time=184

from 1.1: icmp_seq=2 tt1=64 time=182

from 1.1: icmp_seq=3 tt1=64 time=182

from 1.1: icmp seq=4 ttl1=64 time=182

1
1
1
1

Fig. 4. VNC access to a KVM device

Users can also access their devices using a built-in VNC?# viewer as shown in
figure 4. Administrators can use a special section to access debugging informa-
tion, manage the physical hosts and carry out various administrative tasks.

3.2 Device types & capabilities

ToMaTo currently supports two device types offered by PROXMOX: OpenVZ
and KVM? virtual machines. OpenVZ is a container-based virtualization solution
for Linux. OpenVZ virtual machines can run nearly all Linux systems and provide
an environment similar to a physical machine from a user-space perspective.
Since OpenVZ only runs a single kernel for all virtual machines some limitations
arise. The kernel can not be modified, extended using modules or configured
using sysctl from a virtual machine. Also the kernel version limits the guest
systems to Linux operation systems that are compatible with a current kernel.
Virtual network interfaces can be created on the OpenVZ host and exposed to
the guest. Being a container-based virtualization, OpenVZ is very lightweight
and offers flexible resource management (i.e. the external memory usage of a
VM equals the usage inside the VM).

KVM offers a full virtualization including running one kernel per virtual
machine and exposing emulated hardware to the VMs. Using KVM allows to run
any x86-based operating system (even Windows and BSD) and to configure the
operating system as needed. All hardware that is needed by the operating system
including main board, hard disks and network interfaces is emulated by KVM.
This offers maximal flexibility in choosing and configuring the VM but it also
has a higher cost in terms of memory usage and performance reduction. ToMaTo
offers both virtualization choices to the users so they can choose the optimal
setups for their experiments. For both virtualization solutions ToMaTo offers pre-
built virtual machines called templates. The users can choose between various
Linux distributions in 32 and 64 bit architectures. For KVM also a pre-installed
FreeBSD template is available. Users can also download and upload images of

4 Virtual Network Computing
5 Kernel-based Virtual Machine

their virtual machines. This can be used for backup purposes, to prepare an
experiment first before actually running it or to build images containing a custom
operating system that is not in the template list.

3.3 Connector types & capabilities

To connect the devices, and thus form a network topology, ToMaTo offers differ-
ent options the user can choose from. The simplest option is the connector type
“internet”. This connector simply connects the network interface to the Internet.
Network configuration is done automatically using DHCP. Using this connector,
topologies can use external services, the user can access the exposed devices like
servers over the Internet and even other testbed resources can be connected to
ToMaTo topologies. The Internet connector does not allow any QoS® guarantees
and, due to technical reasons, no QoS limitations can be set on this connector
type. Other connector types use the Tinc VPN which connects devices in pri-
vate networks that are not connected to each other nor to the Internet. Users
can choose between hub, switch and router semantics in this private network.
On connections using these connectors, network characteristics like packet loss,
delay and bandwidth limitation can be emulated. Additionally users can capture
network traffic at these connectors and download it as a pcap file to analyze or
view the traffic using specialized tools like Wireshark”.

3.4 Graphical editor & topology creator

To create topologies consisting of the presented devices and connectors, a graph-
ical editor, see figure 3, has been included in the web-based front-end. The editor
provides a simple drag and drop interface for topology creation as well as config-
uration menus for all properties of the single network components. Components
can be added to the topology by selecting them from the panel on the left hand
side of the editor and dragging them to the working area. Components in the
topology can be connected to each other by holding down the Ctrl-key and sub-
sequently selecting all icons that should be connected. For instance, two hosts
can be connected by connecting both of them to an intermediate hub, switch,
or router. The right hand side of the graphical editor provides a property menu
where the properties of the currently selected component, interface or link can
be configured. Depending on the selected entity, these properties include IP-
addresses, host names, network characteristics, and so on.

The graphical editor described so far is enough to create topologies of any
size and complexity. However, if large topologies have to be created, a lot of
manual configuration work is necessary. Furthermore, from an illustration point
of view, if a network consists of more than a few nodes, it becomes difficult to
arrange the icons inside the working area in a way so that the topology structure
is still clearly visible. Therefore, the graphical editor has been equipped with an

5 Quality of service
" Wireshark is a free and open-source packet analyzer, see http://www.wireshark.org

automatic topology creator (T'C). The basic idea of TC is to take as much manual
work as possible from the user and to automate it. TC allows automatic creation
of a previously configured number of identical hosts, to arrange these hosts in an
ordered way inside the working area and to connect these nodes to each other
in a predefined topology structure and with automatically assigned IP-addresses
and host names. So far, TC can connect the hosts either in a star topology with a
central switch or host, in a ring, or fully-meshed, i.e. each host connected to each
of the other hosts. Depending on the selected option, the IP-address subnets and
netmasks are automatically configured and the IP-addresses are assigned to the
host interfaces subsequently.

Subtopology 1

H Tonoloov nroverties
name:

o™

lpensz

l

.
L)
\

upe

po="==

o

e
P

= R~ b
OpenvyZ ~ n!;Qvn

*« (Star around host)
.

s
)

upen\'z

.vz&_ ! A:ﬂenm .5panv1.\-\. .pemru

upsn :.1J

Subtopology 2
(Full mesh)

(]

(] ka3

' e

U Se o'
' ‘\ . -

SsmTe

‘Topology Creator Icon

Johs Subtopology 3
(Ring)

[ceate ewerment]

Fig. 5. Topology creator - Screenshot with example topology and illustration of struc-
ture

With TC, it is not only possible to create new hosts and connect them, but
to connect (and auto-configure) already existing nodes in the network. Figure
5 illustrates the benefits of this functionality both in a general structure and
in a concrete example topology. TC allows easy creation of any kind of hier-
archically structured topology. The procedure starts bottom-up by creating all
of the subtopologies (subtopology 1, 2, ..., i, ..., n) with desired node counts,
connection types and IP-subranges and place them in the working area. Then
(gateway) hosts of the different subtopologies are selected and connected to each
other to create a topology on top of the subtopologies. These steps can be re-
peated arbitrarily often to design a final topology of several hierarchical layers.

In the example displayed in figure 5, a 5-host star topology around a sixth host,
a 4-host full mesh, and a 6-host ring are connected to each other by selecting
one host of each subtopology and fully meshing these hosts.

4 Evaluation

Evaluating a software design is a complex task, one approach is to compare the
design goals or requirements with the actual capabilities of the resulting software.
In case of experimental facility software the design goal is to support experiments
and help researchers carry out their experiments. To evaluate ToMaTo based on
this goal section 4.1 first develops a classification of experiments and section 4.2
outlines how ToMaTo supports these types of experiments. Section 4.3 takes a
quick look at the efficiency and scalability of ToMaTo.

4.1 Types of experiments

The following experiment types have been identified in the German-Lab project.

Access layer experiments consider the lower networking layers and exam-
ine the usage of hardware for networking. An example for this experiment class
are mobile handover protocols. These experiments need access to real hardware,
they often need to run custom operating systems (e.g. with real-time support)
and they need heterogeneous access technologies (3G, Wifi, Fiber, etc.). In most
cases, these requirements can only be fulfilled with custom testbeds, so support-
ing this kind of experiment was not a design goal for ToMaTo.

Network layer experiments consider the TCP /IP suite and its networking
layers. Examples for this class are experiments with IPv6 extensions and TCP
substitutes. This kind of experiment needs to run modified kernels. The resources
that a single experiment needs are normally limited to a few devices but these
devices have to be connected in complex network topologies with link emulation.

Protocol/Algorithm experiments work on top of the network layer and
consider protocols and algorithms for bigger networks. Nearly all peer-to-peer
experiments fall in this category. These experiments need a high number of
devices but not much hardware access, especially no kernel access. They only
need simple network topologies with link emulation.

Legacy application experiments contain legacy software, i.e. widespread
software that cannot be modeled because of its unspecified or unpublished be-
havior. Examples of this software are Skype and Windows. The experiments
with this software often need special operating system environments including
Internet access and link emulation. In turn, these experiments normally do not
need big or complex network topologies.

Experiences of the German-Lab experimental facility[9] show that most ex-
periments can be categorized fairly well with this scheme. A few experiments
have two experiment classes, and thus have requirements of both classes. The
requirements of the classes are very heterogeneous but a general trade-off be-
tween more resource access and access to more resources becomes evident.

4.2 Experiment support in ToMaTo

ToMaTo has been designed to support all experiment classes identified in section
4.1 except for access layer experiments because these experiments need a spe-
cialized experimental facility depending on the access technology. The Wisebed
and DES testbeds for example are specialized experimental facilities for sensor
networks and wifi.

Network layer experiments can be done easily in ToMaTo using KVM
devices and switch connectors. The KVM devices offer all needed flexibility in
kernel choice and modification required by this experiment class. Switched net-
works are layer-3-agnostic so any TCP/IP modification or substitute can be
examined. Using the graphical editor even very complex topologies can be easily
designed. The possibility to capture and download network traffic can be very
handy for this kind of experiment.

Protocol/Algorithm experiments are supported in ToMaTo using OpenVZ
devices and switch or router connectors. Since OpenVZ devices are very lightweight,
a high number of devices can be used in topologies. Using an Internet connector,
external resources like Planet-Lab nodes can be included in the experiment. The
topology creator makes it very easy to design huge experiments with ring or star
topologies. Using the upload/download image feature, users can prepare a device
image once and upload it to all of their devices. Capturing network traffic can
be used to debug the protocols.

ToMaTo also supports legacy application experiments using KVM de-
vices and internet connectors. KVM devices can run nearly all x86 operating
systems including Windows and BSD, so users can build custom environments
for their legacy applications. The legacy application can communicate with ex-
ternal services using the internet connector. Traffic of the legacy application can
be captured and analyzed using specialized tools without any operating system
support.

4.3 Efficiency and scalability

With ToMaTo, users can choose between OpenVZ and KVM virtualization. This
way users can get the level of access that is needed for their experiments and still
use as few resources as possible. A modern cluster node can handle up to 250
OpenVZ devices and up to 50 KVM devices, both depending on device usage.
The connector components only pose a very small overhead and can handle
connections with over 100 Mbps.

ToMaTo hosts use an existing operating system as basis and only need small
changes that have been bundled as software package. That means that support
and security updates are available and do not have to be provided by the ex-
perimental facility administrators. As the ToMaTo back-end only controls the
hosts and only contacts them when users change their topologies, the back-end
can handle many host nodes making the solution very scalable.

ToMaTo can be used to create experimental facilities with distributed hosts.
Limitations in network emulation apply since the resulting link characteristics

are a combination of real and emulated link properties. ToMaTo offers long-term
link statistics so the users can plan their experiments accordingly.

5 Conclusion

ToMaTo allows its users to design, manage and control networking topologies for
use in network research. ToMaTo fits for a wide range of experiments identified
as common in the context of the German-Lab project. The design of the exper-
imental facility software offers efficiency and scalability. ToMaTo is not bound
to German-Lab and can easily be used to build similar experimental facilities.
In the German-Lab experimental facility currently 20 of 182 hosts are ToMaTo-

enabled. The goal is to increase this number to about 50 and thereby increase
the usability of the testbed. Early plans exist to integrate support for Openflow
hardware and software to allow even complexer network topologies.

References

1. DES-Testbed A Wireless Multi-Hop Network Testbed for future mobile networks,
Stuttgart, Germany, 06/2010 2010.

2. J. Ahrenholz, C. Danilov, T. Henderson, and J.H. Kim. Core: A real-time network
emulator. In Proceedings of IEEE MILCOM Conference, 2008.

3. Tobias Baumgartner, loannis Chatzigiannakis, Maick Danckwardt, Christos Koni-
nis, Alexander Kroller, Georgios Mylonas, Dennis Pfisterer, and Barry Porter. Vir-
tualising testbeds to support large-scale reconfigurable experimental facilities. In
Proceedings of EWSN - 7th European Conference of Wireless Sensor Networks,
pages 210-223, 2010.

4. Y. Benchaib and A. Hecker. Virconel: A new emulation environment for experi-
ments with networked it systems. In High Performance Computing € Simulation
Conference, 2008.

5. Justin Cappos, Ivan Beschastnikh, Arvind Krishnamurthy, and Tom Anderson.
Seattle: a platform for educational cloud computing. In Proceedings of the 40th
SIGCSE Technical Symposium on Computer Science Education, SIGCSE 2009,
pages 111-115, 2009.

6. Marta Carbone and Luigi Rizzo. Dummynet revisited. Computer Communication
Review, 40(2):12-20, 2010.

7. Paul Miiller and Bernd Reuther. Future internet architecture - a service oriented
approach. it - Information Technology, 50(6):383-389, 2008.

8. Larry L. Peterson, Andy C. Bavier, Marc E. Fiuczynski, and Steve Muir. Experi-
ences building planetlab. In OSDI, pages 351-366. USENIX Association, 2006.

9. Dennis Schwerdel, Daniel Giinther, Robert Henjes, Bernd Reuther, and Paul
Miiller. German-lab experimental facility. In Proceedings of FIS 2010 - Third
Future Internet Symposium, pages 1-10, 2010.

10. Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated experi-
mental environment for distributed systems and networks. In OSDI, 2002.

