

Overview

- Hardware architecture
- Software architecture
- Connectivity
- Remote management/Site Logistics/Usage
- Interaction with other projects

Introduction

- ExoGENI Racks: a partnership between <u>RENCI</u>, <u>Duke</u> and <u>IBM</u>
- Uses IBM x3650 M3 and M4 2U servers
 - Westmere PCIe II or SandyBridge PCIe III 4 or 6 core
- An OpenFlow switch (vendor TBD) with either
 - 1G ports with 10G uplinks
 - 10G ports with 40G uplinks
 - Depends on available bandwidth at the site
- Separate iSCSI storage for
 - User OS images
 - Measurement data
- Expandability
 - 2U servers with PCIe III for
 - GPGPUs, 10/40/100G NICs, NetFPGA 10G, ???

ExoGENI Rack

- Management node (no experimenter access)
- Worker nodes (sliverable)
 - Bare metal
 - Virtualized
- Management switch
- OpenFlow dataplane switch
- Sliverable storage

Dataplane to dynamic circuit backbone (10/40/100Gbps)

Software stack

- Design philosophy:
 - An immutable 'boot' layer built on stable tried-and true technologies
 - Resource provisioning (compute, network, storage)
 - Measurement (e.g. power via IPMI)
 - Remote management
 - 'Exo' [prefix] external, from the outside
 - GENI software running on top of the boot layer uses exported provisioning functions to
 - Emphasis on virtualization technologies:
 - Hypervisors (KVM), SR-IOV
 - Hardware design goal: highest core count per rack within budget (not highest server count).
 - Use ORCA Control Framework

ExoGENI Software Stack

Experimenter Tools

Experimenter Tools

Experimenter Tools

ExoGENI Rack Connectivity

Connectivity details

- 1. Remote management connection via campus L3 network
 - Low traffic, secured with VPN
- 2. Rack has a connection to one of national research backbones: NLR, I2, ESnet, ANI
 - Rack has a claim on a significant fraction of 10G interface capacity
 - Some sites will offer 40G and 100G connectivity
 - Connection is direct or via RONs
- Rack either
 - has a claim on a pool of VLAN tags that are visible at the backbone negotiated with RON
 - has a direct connection to a dynamic circuit network (NLR Sherpa, I2 ION, ESnet/ANI OSCARS)
- Experiment topologies can be
 - Intra-site contained within a single rack
 - Inter-site spanning multiple racks over the L2 networks
- VLAN tag remapping when tags do not match across sites
 - Using RENCI-owned resources at RENCI and StarLight
 - OSCARS does it for some networks (w/ MPLS)
 - Work with NLR to integrate this into Sherpa

Connectivity details (continued)

- 3. Optionally rack has a connection into the campus OpenFlow network
 - Potentially bursty, high traffic demand originating from experiment slices
 - Needs negotiation with campuses for security and performance

Remote Management/Site Logistics

- Racks will be assembled/tested by IBM at the manufacturing or integration facility
 - Software pre-installed
 - Shipped directly to the site
- Extensive remote management/low remote hands/eyes requirements
 - Secure management network linking the racks
 - IBM MediaKey
 - IPMI 2.0
 - Remote power on/off

Uses

- Resources delegated via ORCA to various resource pools
 - GENI for all GENI users
 - Local use for local users
 - Others*
 - Sites are encouraged to purchase/add own compliant hardware to expand existing resource pools or create new ones to serve other domain science research.

