
D u k e S y s t e m s

Accountability	
 and	
 Authoriza1on	

GEC	
 12	

Jeff	
 Chase	

Duke	
 University	

Thanks: NSF TC CNS-0910653

Authorization with ABAC

Client E Server A Request
Command C
 on Object O

authorization policies attributes + capabilities

Query
A.COE?

ABAC
inference
engine

query
context

GEC-11 Auth Session

ABAC in Context

trust
anchors

Client E

context
store

operator

Server A Request
Command C
 on Object O

Context transfer
credential set

user
delegation

authorization policies attributes + capabilities

Query
A.COE?

ABAC
inference
engine

credential set for C
A’s policies for O context

store

query
context

GEC-11 Auth Session

ABAC in ORCA

•  Integration complete; policies checked out.
•  Credential management: still “rough edges”
•  Not yet in production.

Client E Server A Request
Command C
 on Object O

Query
A.COE?

ABAC
inference
engine

credential set for C
A’s policies for O context

store

query
context

Direct-injected
contexts from
unspecified

credential sources

ABAC in GENI

•  ABAC is a powerful declarative representation that
can capture the GENI authorization/trust model.

•  It saves a lot of code, provides a rigorous foundation,
and preserves flexibility for future innovation.

•  It should be easy for users, although we need some
better tools there. (E.g., to delegate rights.)

•  Libabac “works off the shelf”.
•  In progress: policies for safe operational deployment.

ABAC policies
•  The basic mechanisms are in place:
–  Simple user certs issued by identity portal
–  Slice capabilities with delegation
–  Groups (projects) with flexible membership
–  Delegation of capabilities to groups
–  Trust structure: AM endorsements, etc.

•  Some details to resolve:
–  Specific user/group attributes
–  Their use in resource allocation policy
–  Slice credentials in ABAC

•  Open question: CH role

All is not sweetness and light

•  But it’s based on signed credentials (certs).
–  And on X.509….

•  That presents challenges for which there is
no perfect solution.

•  And so there is:
–  Fear
–  Uncertainty
–  Doubt

Image used without permission or right from 'Stories of the Gods and Heroes' by Sally Benson,
1940, Dial Press. Reprinted in Colliers Junior Classics, 'Legends of Long Ago', 1962.

Credential management

•  Each principal possesses many certs.
–  Which ones are relevant to a given request? Where are they?

•  Some of those certs are delegated.
–  Server needs even more certs to validate delegation chain.
–  Those certs belong to someone else. Server gets them…how?

•  Credentials expire.
–  How to automate renewal?

•  People change…and people lose their keys.
–  Revocation: how to do it fast and make it stick?
–  How to rebuild credentials with new keys?
–  How to keep the system safe in the real world?

Summary: what’s on the table

1.  Policies for safe operational deployment
2.  “Clearinghouse” (CH) role
–  Synchronous intermediary?
–  Credentialing authority?
–  How much does it know about:
•  Users and groups?
•  Powers of users and groups?

3.  Credential management
–  Revocation, renewal, key rotation
–  Principal names vs. public keys

Clearinghouse

A1. Every action that allocates a resource is taken with the public key
of a registered GENI experimenter (E). Some GENI-authorized
identity provider (I) knows the binding to an actual human (H) who
can be punished. Given E, G*OC can determine H. Or at least
GOC can determine I, which can determine H.

A2. Every action that allocates or uses a resource is taken in the
context of a slice (S). Given S, GOC can determine a human
project leader who is accountable for S.

A3. Every conforming AM logs all resource-related actions together
with the public key E that took the action, and the slice S that was
the context for the action. These logs are available to GOC.

A4. Each GENI service publishes to the GOC all credentials that have
been used by any E to take any action within GENI. From these
credentials GOC can determine how and why E was authorized to
take the action.

A5. Various monitoring facilities record interesting events at various
levels, and associate them with a slice S. These records are
available to GOC.

A1. Experimenter accountability

•  Every action that allocates a resource is taken with
the public key of a registered GENI experimenter (E).

•  Some GENI-authorized identity provider (I) knows
the binding to an actual human (H).

•  Given E, G*OC can determine H. Or at least GOC can
determine I, which can determine H.

GOC.registeredPrincipal
EH

A2. Group accountability

•  Every action that allocates or uses a
resource is taken in the context of a slice (S).

•  Given S, GOC can determine a human project
leader L who is accountable for S.

GOC.PI(G)
SG

A3. GOC learns E and S

•  Every conforming AM logs all resource-
related actions together with the public key
E that took the action, and the slice S that
was the context for the action. These logs
are available to GOC.

CH: Auditing and Accountability

AM AM AM AM

 Asynchronous event feeds
 Signed and timestamped
 Delay < 1 minute (?)
 Report all resource actions
 Is this enough?

Event reports

Policy compliance
and early warning

Policing and
enforcement

A4. GOC learns all delegations

•  Each GENI service publishes to the GOC all
credentials that have been used by any E to
take any action within GENI. From these
credentials GOC can determine how and why
E was authorized to take the action.

CH: Credentialing

AM AM AM AM AM
Identity
Portal

Actor
Registry

Slice
Authority Slice

Authority

 Endorse AMs, SAs, IdPs
 Issue user credentials
 Groups (“projects)
 Execute agreements etc.
 Is this enough?

credentials

credentials
login

Slice
request

Summary and a look ahead
•  Signed security assertions enable decentralization

–  Essential CH functions distill down to credentialing.

•  Problem: we need Big Brother, at least for now.
–  Solution: event logs and registeredPrincipal
–  But Big Brother needs the certs to identify other

accountable parties.
–  And Big Brother is nervous about PKI…

•  Proposal: public always-on credential store
–  Cert query  context
–  Short-term caching, configurable TTL
–  Refresh for renewal
–  “Poisoning” for revocation

Clearinghouse (CH): Position summary

•  GPO requires strong central control over GENI in the
near term.

•  Even so, the architecture should enable a transition
to decentralized deployments in the future.

•  Consider CH functions separately. Focus on safety.
•  Resource management is wide open  see ORCA.
•  Other essential functions are “easy” given a strong

core for identity and trust (off-the-shelf).
•  Operational concerns for credential management

(e.g., revoke/renew) are the crucial focus.

Sponsored by the National Science Foundation 23

“Clearinghouse” has always been a shorthand for
“that which manages federation”.

Standard issue BBN napkin Chip Elliott @ GEC4

Clearinghouse Functions

A. Auditing and accountability
GOC receives event logs (audit trails) distributed by pub/sub.

Avoid central authorization services where we can.

B. Brokering requests and allocations
Resource quotas/caps, sharing policies: rarely discussed in

GENI. ORCA uses ticket-granting brokers. Central
authorization services are useful here!

C. Credentialing users and services
Federated identity (e.g., Shib) + ABAC credentials

D. Discovery/Directory of resources/services
Dissemination: non-essential, cannot subvert system 

replaceable and “easy” to build scalable implementations

