
GENI System Architecture:
Overview and Narrow Waist
Facility Architecture Working Group /
Narrow Waist Working Group
Larry Peterson and John Wroclawski

1st GENI Engineering Conference
Oct 10, 2007



Purpose of Talk
• Describe the (strawman) overall GENI system architecture

– What
– Why

• Describe the (strawman) core or “narrow waist” of this
architecture
– “Fixed points” around which the rest of GENI can be built and

evolve
• Provide (initial) context for people interested in building

other parts of GENI
– Explanation of Narrow Waist abstractions and interfaces
– Maturity levels
– Open issues and future development directions



Design flow
Technical

Req’s

Ops and
Mgmt.
Req’s

Construction/
Community

Req’s

High Level
Architecture

GMC (core)
Architecture

GMC
Implementation

Requirements
Overall Design:
modularity and

structure
Narrow Waist:

abstractions and
Interfaces

Narrow Waist:
algorithms and
implementation

choices



Top-Level Requirements
1. Generality

A. Minimal Constraints
➤ allow new data formats, new functionality, new paradigms,…
➤ allow freedom to experiment across the range of architectural issues

(e.g., security, management,...)

B. Breadth of Representative Technology
➤ include a diverse and representative collection of networking

technologies, since any future Internet must work across each of
them, and the challenges/opportunities they bring

2. Sliceability
➤ support many experiments in parallel
➤ isolate experiments from each other, yet allow experiments to

compose their experiments to build more complex systems



Top-Level Req (cont)
3. Fidelity

A. Device Level
➤ expose useful level(s) of abstraction, giving the experimenter the

freedom to reinvent above that level, while not forcing him or her to
start from scratch (i.e., reinvent everything below that level)

➤ these abstractions must faithfully emulate their real world equivalent
(e.g., expose queues, not mask failures)

B. Network Level
➤ arrange the nodes into representative topologies and/or distribute the

nodes across physical space in a realistic way
➤ scale to a representative size
➤ expose the right network-wide abstractions (e.g., circuits, lightpaths)

C. GENI-Wide
➤ end-to-end topology and relative performance
➤ economic factors (e.g., relative costs, peering)



Top-Level Req (cont)
4. Real Users

➤ allow real users to access real content using real applications
➤ provide incentives and mechanisms to encourage this
➤ Support long-lived experiments and services

5. Research Support
A. Ease-of-Use

➤ provide tools and services that make the barrier-to-entry for using
GENI as low as possible (e.g., a single PI and one grad student
ought to be able to use GENI)

➤ Key point: this community builds its own tools..

B. Observability
➤ make it possible to observe and measure relevant activity



Top-Level Req (cont)
6. Sustainability

A. Extensible and evolvable
➤ accommodate network technologies contributed by various partners
➤ accommodate new technologies that are likely to emerge in next

several years
➤ support technology roll-over without disruption

B. Operational Costs
➤ the community should be able to continue to use and support the

facility long after construction is complete
➤ Trade off increased capital cost for decreased operational cost when

appropriate



Facility Architecture (View 1)

User Services

Substrate Components

Bootstrap
Structure

Reference
Implementations

Minimal
Core

Universal
Fixed Point

- name spaces, registries, etc
-for key system elements
(users, slices, & components

- set of interfaces
-(“plug in” new substrate
 components)

- support for federation
-(“plug in” new partners)



Facility Architecture (View 2)

O&M

Aggregate
Control

Measure-
ments

Components

Aggregate A

O&MMeasure-
ments

Components

Aggregate B

Researcher
with Tools

Admin Region

List of
Organizations

List of
Resources O&M Policy

Measurement Plane

Control Plane

Data Plane

Federation

Trust
Interface

Internet

Opt-in
User (??)

Aggregate
Control

Research
Organization



Diversion: the physical substrate
• The key function of the GENI system is to support

flexible, useful embedding of experiments within a
shared physical substrate.

• To understand the system architecture, it is helpful
to first understand the sorts of physical resources
the architecture is designed to control.

• I will walk through this quite quickly.
I will tell lies.



National Fiber Facility



+ Programmable Switch/Routers



+ Clusters at Edge Sites



+ Wireless Subnets



+ ISP Peers

MAE-West

MAE-East



Internet

Site B

GENI
Backbone

Site A

Suburban Hybrid
Access Network

Sensor Net

PEN

PEN

Urban Grid
Access Network

PWN

PWN

PWN
PWN: Programmable Wireless Node
PEN: Programmable Edge Node
PEC: Programmable Edge Cluster
PCN: Programmable Core Node
GGW: GENI Gateway

GGW

PEC

GGW

PEN

PCN

PCNPCN



Overall system architecture
• Previous slides described a strawman physical

substrate
• Next slides describe GENI’s system architecture -

the software abstractions, objects, and functions
that make this physical substrate available to
GENI’s researchers as experiments.



Substrate Hardware

Substrate HW Substrate HW Substrate HW



Slicing Model and Software
(often, “virtualization”)

Virtualization SW
Substrate HW

Virtualization SW
Substrate HW

Virtualization SW
Substrate HW



Components

Substrate HW Substrate HWSubstrate HW

CM

Virtualization SW

CM

Virtualization SW

CM

Virtualization SW

• Export a standard component manager interface
– Resource allocation (to slices) and control
– Minimal management



Aggregates

Resource Controller Auditing Archive

Aggregate
(Proxy for set of components)

CM

Virtualization SW
Substrate HW

CM

Virtualization SW
Substrate HW

CM

Virtualization SW
Substrate HW

O & M Control
Slice Coordination



Federation

Available resources
Usage Policies

Admin A Admin B

Invocation

Policy analysis

Federation
Interface



User Portals

Researcher Portal
(Service Front-End)



PEC
(Site 1)

GENI
Backbone

PCN

PCNPCN

Wireless SubnetPEN

PWN

PWN

PEC
(Site n)

. . .
Internet

Wireless SubnetPEN

PWN

PWNOps Team

Researchers

Edge Site
Mgmt
Aggregate

Wireless
Mgmt
Aggregate

Wireless
Mgmt
Aggregate

Backbone
Mgmt
Aggregate

Researcher
Portal

Operations
Portal

O&M
Control

O&M
Control

O&M 
Control

O&M 
Control

Slice
Control

Slice
Control

Slice
Control

Slice
Control



The narrow waist
• Previous slides have described the physical

substrate, and some aspects of the overall software
architecture that supports it

• Next slides describe the narrow waist - the core
abstractions that serve as “fixed points” for the
GENI architecture
– GENI’s fixed “narrow waist” allows other system

elements to evolve flexibly and independently
➤ New components, services, partners, …
➤ Particularly relevant during this early development /

prototyping phase.



Hour-Glass Revisited

User Services

Substrate Components

Bootstrap
Structure

Reference
Implementations

Minimal
Core

Universal
Fixed Points



Minimal Core
• Principals

– Slice Authorities (SA)
– Component Management Authorities (MA)
– User (researcher/experimenter, not “end user”)

• Objects
– Slices - containers for experiments

➤ Registered, Embedded, Accessed
– Components - providers of resources

• Data Types
– Global Identifiers (GID)
– RSpec: resource specification
– Tickets (credentials issued by component MA)
– Slice Credentials (express live-ness, issued by SA)



Core (cont)
• Default Name Registries

– Slice Registry (e.g., geni.us.princeton.codeen)
– Component Registry (e.g., geni.us.backbone.nyc)

• Component Interface
– Get/Split/Redeem Tickets
– Create and Control Slices (“Slivers”)
– Query Status



Core (cont)
• Management Interfaces

(Minimal common elements)
– Return to known state
– Start/stop
– Become more intelligent (boot load)

• Federation Interfaces
– Cross-domain accountability
– Policy expression and management



Maturity levels
• General statement

– The strawman design builds on significant community
experience.

➤ PlanetLab, Emulab, DETER, others.
– The strawman design is work in progress.

➤ It is not implemented.
➤ Some parts are incomplete.
➤ Some are in great flux.

– … but the initial version is incremental and “simple”
– Component and service prototypers will work in

parallel with the narrow waist / core development.



Relatively Mature
• Core system objects - users, components, ..
• Concept & function of components
• Concept & function of universal identifiers
• Concept of resource specifications
• Simple model for slice and component registries
• …



Less Mature
• Configuration management

– How are components at a site related?
• Federation model and interfaces

– How do we build experiments across different
administrative regions?

• Operations and management interfaces
– Ensure sufficient reliability, accessibility
– Track usage to plan for future neede

• …



Construction issues
• Objectives

– Allow broader community to contribute (not just subs)
– Scale (federate) the integration effort

• Strategy
– Feature Development

➤ Roughly equivalent to open source development process
– Component/Aggregate Integration

➤ Roughly equivalent to preparing a Linux distribution



Design Develop Unit Test

Node
Integration

Node
Testing

Feature
Repository

D
istribution

D
istribution

Aggregate
Integration

Aggregate
Testing

Component
Repository

D
ep

en
d
en

cy

S
p
ecialization

D
istribution

Aggregate
Repository

S
p
ecialization

DEPLOY

• Features (hardware and software) are developed through
the working group and tested locally

• Once complete a feature is passed to a feature repository
where acceptance testing occurs (queued until
dependencies resolve)

• Features in the repository can be picked up to enable
development of other features

• A collection of hardware and software features
are integrated into a canonical node

• The canonical node is distributed to a node
repository for acceptance testing

• Nodes are available for specialization

Acceptance Testing

Acceptance Testing

Acceptance Testing

• A collection of nodes and communication
features are integrated into a coherent
aggregate

• Aggregates are themselves integrated to
create, ultimately, the GENI Facility



40+
Packages

MyPLC

VINI
PlanetLab
OneLab

…

Us Others




