

Mobility in Wireless Networks

NSF Workshop Rutgers, July 31-Aug 1, 2007

Mario Gerla (UCLA) Dipankar Raychaudhuri (Winlab) Jie Wu (NSF)

http://netlab.cs.ucla.edu/mwnet/usemod10/wiki.cgi?Main

The Mobile Internet

- New generation of powerful portable devices:
 - Can support most Internet needs
- Wireless speeds growing constantly:
 - 4G expected to achieve 40Mbps
 - WiFi up to 100Mbps
- Opportunistic ad hoc networking facilitates
 P2P applications

The paradigm shift

- Traditional wireless mobility:
 - Last hop connectivity
 - Soft handoff (horizontal, vertical)
 - Most data and services still in the wired Internet
 - Advanced ad hoc networking only in tactical and emergency scenarios

The paradigm shift (cont)

- Emerging Wireless, Mobile Internet
 - The data is collected by portable devices, and may stay (and be searched) on the devices for a long time:
 - Urban sensing (vehicle, people)
 - Medical monitoring, etc
 - This creates new challenges
 - Distributed index (ie, publish/subscribe) to find the data
 - Data sharing among mobilers via opportunistic P2P networking
 - Infrastructure used if more efficient than pure wireless:
 "Reconfiguring the Infrastructure"
 - Privacy, security, protection from attacks
 - Intermittent operations (mobile nodes can become disconnected); delay tolerant applications; disruption tolerant networks

Collaborative Health Monitoring: ZigBee as Health-Net

Nurses Cache-and-Forward Patient Data to Doctors

Objectives of the NSF Workshop

- How does "mobility" change traditional network architecture and design?
 - Applications
 - Protocols
 - Mobility models
- What new research is needed to make progress?

Emerging Mobile Applications

A New Generation of Mobile **Applications**

- Distributed
- Integrating heterogeneous infrastructure (e.g., WiFi, cellular, satellite) and ad-hoc networking
- Location-aware
 - Opportunistic, predict, control
- **Exploit mobility**
 - Homogenous or heterogeneous mobility
 - Individual or swarm mobility
- User behavior-aware
- Location privacy sensitive
- Self-configurable, self-tunable, remotely manageable
- **Energy-aware**

Mobile Application Examples

- Vehicular applications
 - Safety, traffic information, route planning
- Content-sharing applications
 - Entertainment (video, audio), games
- Mobile external sensing
 - Urban pollution sensing, accident reporting
- Mobile ad-hoc services
 - Relaying to near-field users
- Emergency applications
 - Disaster recovery
- Mobile network management
- Mobile social networking
 - Mobile Facebook

Research Challenges

- Mobile application design
 - Location-aware, exploit mobility, gathering feedback and traces
- Performance and QoS
 - Delay tolerance, channel variations
- Cross-layer communication design
 - Exploit mobile application context information
- Security issues
 - Location validation, Location privacy, Trust management
- Social aspects
 - Event-driven and event-generated mobility

Robust, Motion Resistant **Protocols**

Main Message

- Changing the view on mobility:
 - Mobility has become an integral attribute of the Internet and we need to design for it.
 - Without mobility support, the Internet cannot be invisible.
- There is a big gap between the opportunities that mobility enables and the practical protocols that can take advantage of it.
- Design for mobility requires a clean-slate approach to communication protocols in wireless networks and the Internet
- Design for mobility has direct implications on the Internet design, in-network storage and localization information being key factors
- Standards are needed for benchmarks.

Why Is Mobility Important? (1)

Mobility impacts:

- the conditions in which protocols must operate,
- the state and context that nodes can use to communicate, and
- the problems that protocols must solve.

Examples:

- The state of links is a function of mobility (e.g., link lifetime, fading, multipath effects, direction of a link, etc.)
- The neighborhood of a node changes with mobility, which impacts reliable exchanges, channel division (space, time, code, frequency) among neighbors, and forms of cooperation between senders and receivers (e.g., virtual MIMO, network coding)
- End-to-end paths change with mobility, which impacts path characteristics (in-order delivery, delay, throughput, lifetime of paths, etc.) and the allocation of resources over paths to satisfy application requirements.

Designing for Mobility

- Some protocols benefit from mobility: group mobility, etc.
 - Use mobility as a mechanism for information dissemination
- Controlled mobility:
 - nodes move around to improve topology, deliver data, store-carry-forward,
 - trajectory planning and changing what routes
- Interest-driven "physical" dissemination:
 - How should opportunistic data mules handle data?
- Content-driven routing

Mobility Models and Mobile Testbeds

Model Flexibility

- Multiple scale models
 - Micro and Macro levels, (e.g., from stop signs to cross town patterns
- Multi-faceted scenarios
 - Combines motion, data traffic, map, infrastructure
 - Interrelation between data/motion; data caching; aggregation, etc
- Trade off between accuracy and usability
 - Different applications may focus on different parameters

Traces to Models

Traces:

- Lack of cellular traces (owned by providers)
- Lack of vehicular traces (not enough testbeds)
- Lack of social network tracing experiments
- Scarcity of urban traces

Interplay/synergy of:

- Measured traces
- Synthetic models/traces
- Theoretical motion/traffic models

Metrics and Parameters

- Motion Impact on Data Performance:
 - How are the metrics impacted by the particular motion patterns,
 - How do the motion patterns impact the traffic,
- Consider new "mobility" measures:
 - Inter-contact time, neighborhood change rate, partitioning, clustering, etc
 - Ideally, a few motion "primitives" that can cover most scenarios and allow cross comparison of test experiments

Performance Benchmarks

- Well defined benchmarks
- Knobs, ie, flexibility
 - Need to understand effect of knobs
 - Need knobs tunable to applications
- Sound design methodology
 - Ability to tradeoff accuracy, complexity etc.
 - Verifiability

Testbeds

Testbed Flexibility

- Multi-layer multi-user vs. single layer/user testbeds
- Heterogeneous (hardware, protocols, applications)
- Broad range of motion patterns:
 - From pre-scheduled to controlled and spontaneous
- Broad Range of devices:
 - From small scale testbeds (motes) to large scale testbeds (vehicles)

Testbed Scalability

- Testbed expansion with simulation and emulation
- Integration with real world networks and applications

Testbed Realism

- Need more than what simulation already gives us!!
- Need to understand:
 - Realistic user behavior in reaction to motion, data etc
 - Realistic channel behavior
 - Real implementation/HW constraints
- Uncover:
 - interactions between layers and inefficiencies
 - Incorrect common beliefs
- Appreciate:
 - HW, SW, Mgmt costs

How can the Internet (and GENI) support mobile applications?

- Addressing and routing
 - Geo-routing
 - More generally, attribute based routing
 - Mobility support
- Interaction with the infrastructure
 - Off loading the wireless internet
- Wireless as emergency network
 - When the infrastructure is brought down
- Congestion control assistance
- Security, protection against attacks