END-TO-END SERVICE GROUP Justin P. Rohrer, Dennis Schwerdel, Abbas Siddiqui, Martin Becke, Divya Giri GEC 10 Doctoral Consortium, 15 Mar 2011

RESEARCH PROBLEM

- Current and future internetwork heterogeneous entities
 - Currently best-effort, without selectable properties
- Applications need end-to-end "homogeneous" functionality
 - With some quality of service constraints
- Little/no information exchanged currently
- How do we map, aggregate, and tune network capabilities to service requirements?

WHY IS IT IMPORTANT

- More bandwidth won't fix everything, forever
- Diverse requirements from future applications
 - e.g. guaranteed service for telepresence
- "best effort" priorities are not equal for all application

3

• e.g. latency vs bandwidth

EXPERIMENT DESIGN

- Multiple application/traffic types
 - Measure end-to-end performance
- Multiple decision algorithms/locations
 - Compare making decisions at network edge vs core
- Centralized data collection
- Scope: ~100 application nodes, 10-20 routing nodes

EXPERIMENT MEASUREMENTS

- Optimize end-to-end performance for multiple applications
 - e.g. latency, jitter, error-rate, throughput
- Need to instrument intermediate links and nodes
 - Provide "best possible" optimal solution as reference
 - To debug anomalies

EXPERIMENT DESIGN

GENI/G-LAB FACILITIES

- Wireless and/or wireless-emulation facilities (ProtoGENI)
- Wired facilities (ToMaTo + ProtoGENI)
- Controlled environment: guaranteed minimum bandwidth links

- Sub-millisecond time synchronization
 - (GPS time sources?, IEEE 1588v2)

EXPECTED RESULTS

- Minimum complete set of network element properties
 - Immutable attributes
 - e.g. latency, medium, geographic location, topology
 - Tunable parameters
 - e.g. encryption, error correction, topology?

EXPECTED RESULTS

- Minimum complete set of application (user) requirements
 - e.g. max. delay, min. bandwidth, reliability, asymmetry
 - need a comprehensive but tractable set of metrics
- Best location for decision functionality (core or edge)

BENEFIT OF COLLABORATION

- Exchange of ideas and experience
- High-latency trans-atlantic connection
- Larger scale through combined resources
- Combined feature set
 - ToMaTo: packet tracking, dynamic topology
 - ProtoGENI: many nodes, wireless nodes, "real" hardware

END OF SLIDES

||

• Any Questions?

SCOPE

- Target new applications
- Utilize currently unavailable metadata
- Green-field, clean-slate

EXPERIMENT IDEAS

- Need heterogeneous topology, with metadata description
 - Implies control-plane API
- Outcome: Find ideal set of information to expose in network
 - Find ideal set of constraints required by application
 - Future-proofing?
 - Determine placement of functionality

DECISION METRICS

- Per link/node
 - BER/PER, MTU, available bandwidth, latency, jitter
 - Cost, "extra features"

PROPOSED EXPERIMENTS

- There is only one world-wide computer
 - No networking needed, only inter-process communication
- Problem solved*
- *Dependent on creation of world-wide computer**
 - **Design and production to be outsourced