
Practical Exploitation on System Vulnerability of ProtoGENI

Dawei Li, Xiaoyan Hong
Department of Computer Science

University of Alabama, Tuscaloosa, AL 35487

ABSTRACT
Global Environment for Network Innovations (GENI) is a
unique virtual laboratory for at-scale networking experimen-
tation exploring future Internets. The successful develop-
ment of GENI has to consider security problems from the
design and prototyping stages. However, in many cases, sys-
tem vulnerability cannot be found unless through real ex-
perimentation bearing purposeful and meaningful designs.
In this paper, we introduce some of our efforts in explor-
ing the security vulnerabilities in ProtoGENI, a prototype
implementation and deployment of GENI. Our results show
potential breach on security of GENI in terms of availability.
We make suggestions on potential defense strategies in order
to improve the ProtoGENI security and its development. 1

Keywords
ProtoGENI, GENI security, vulnerability, GENI experiments

1. INTRODUCTION
The Global Environment for Network Innovations (GENI)

is a virtual laboratory for at-scale networking experimen-
tation [11]. One critical issue for such an at-scale infras-
tructure is security. The primary goal of GENI security is
“not (to be) used for illegal activities or as launchpad for
attacks, (and) GENI availability not compromised by at-
tacks [2].” However it is extremely challenging to achieve
the goal due to the many unique features. The early GENI
developers’ approach towards the security goal catches the
following essences: (1) researcher identity management in-
cluding credential generation and delegation; (2) emergency
stop procedures being ready to shut down some experiments
or the entire GENI infrastructure; (3) security best practices
at different aggregates (operating organizations with physi-
cal resources to offer).

1This work is supported in part by BBN/NSF contract
project 1783.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
49th ACM Southeast Conference , March 24-26, 2011, Kennesaw, GA, USA
Copyright 2011 ACM 978-1-4503-0686-7/11/03... $10.00.

Yet, there is more to understand the security requirements
of GENI (in our case, ProtoGENI). Following the need, our
project takes an experimenter’s approach to explore the sys-
tem vulnerabilities [6]. The rational of our experimenters is
to act as a purposeful user of ProtoGENI who poses security
threats when vulnerabilities exist, and then makes sugges-
tions to ProtoGENI development team. The purpose of our
experiments is to help build a secure research infrastructure
through the suggestions made based on our experiments.
The experiments were performed with careful supervision,
and with notifications to related personals and were only
performed against own testing PCs and testbed slices.

Our current work uses one of the four prototyping clusters
of GENI functions, namely, the Cluster C. Each prototyping
cluster involves unique network resources and control frame-
works. ProtoGENI is the control framework of Cluster C [4].
It is mainly derived from the research infrastructure Emulab
at Utah [1], which gives researchers a wide range of environ-
ments to control the test conditions and allows repeatable
research results. The ProtoGENI can be regarded as both
a hardware facility providing computing and networking re-
sources and a software, i.e., a control framework, defining
the policies of user authentication, resource allocation and
communication among different parties.

In this paper, we describe the network experiments that
exploit the interface between the experimental plane and
control plane. The results of experiments show that the
damage can be on two directions when acting as an experi-
menter. One direction is that we are able to make the Pro-
toGENI resource not available to other experimenters. And
the other direction is that we are able to disconnect an active
network node from its experiment. That’s to say, our pre-
liminary experiments could breach the GENI security goal
of “GENI availability not compromised by attacks”. We re-
port this finding to corresponding GENI development teams
and to suggest possible defense strategies.

Our paper will be organized to introduce the ProtoGENI,
and its control plane and data plane (in Section II), the
exploitation method (Section III), and experiment steps and
the results we obtained (Section IV). We conclude the paper
by outline possible defenses strategies (Section V).

2. BACKGROUND

2.1 ProtoGENI Control Framework
ProtoGENI is a prototype implementation and deploy-

ment of GENI functions. We introduce the key compo-
nents of ProtoGENI facility and functioning software en-

Figure 1: Control plane and data plane

tities. They describe the management and the principles of
the usage of GENI and ProtoGENI.

• ClearingHouse (CH): Center for registration, manag-
ing the users;

• Component Manager (CM): Resource provider, man-
aging resources at a particular location;

• Slice: Container for resources, providing a piece of live
virtualized network testbed for an experiment. It can
cross many resource providers;

• Slice Authority (SA): Managing the slices, authenti-
cating users to slices;

• Sliver: Computing resources granted to a user inside
of his specified slice;

• RSpec: Resource specification, the mechanism used for
advertising, requesting and describing the resources;

• Vnode: virtual node, sharing with other slices in the
current sliver through splitting a physical node us-
ing virtualization. Current ProtoGENI realizes Vnode
through OpenVZ.

2.2 ProtoGENI Control Plane and Data Plane
ProtoGENI facility can be viewed as two separate planes:

Control Plane and Data (Experimental) Plane. The data
plane is users’ slices and is where experiments are, which
can be configured for the topology that experiments define.
The control plane is a separate network that configures and
interacts with the data plane to support the network exper-
iments. It also allows users to access from outside of GENI,
usually through Internet connection, to use the slices in their
data plane. The architecture is shown in Figure 1.

2.3 Steps to Use ProtoGENI
A user follows a series of steps to do experiments with

the provided scripts[4]. Typically, there will be an initial
Getting Ready phase and repeatedly Execution phase. In
the getting ready phase, a user will need to obtain a SSL
certificate and pass-phrase for connecting to the web-based
ProtoGENI user portal (currently is the same as Emulab).
He will then obtain a SSH key for remotely access to the
experimental nodes in the sliver.

After the initial phase, a user can repeatedly use the es-
tablished credentials to perform network experiments. For

each experiment, a user will use scripts to interact with Pro-
toGENI control framework (clearinghouse, slice authority,
component manager) to register and then to create a slice.
The user will write an RSpec to express his request of re-
sources in the creation action. Then the user starts the sliver
and uses it. When finished, he deletes and deregisters the
slice.

3. EXPERIMENTATION METHODS
The experimentation presented in this paper aims at ex-

ploiting the potential weaknesses of ProtoGENI through ex-
perimental environment exposed to a user of the system in-
ternals. One such interface is the connections of the data
plane and the control plan. The control plane - data plane
architecture provides the attackers a good chance to launch
the denial of service attack. Typically, a control node works
as the default gateway in the control plane while interacting
with experimental nodes. If a denial of service attack being
successful, valuable network research performed in GENI
will suffer badly and lead to potential inestimable loss. The
network protocols running at the control node can be at
stake. In this work, we examine the ARP protocol and its
potential threats to the availability of ProtoGENI. Our re-
sults will show that the ARP cache poisonning attack is
particularly harmful in GENI-like network experimentation
infrastructure.

3.1 ARP Protocol and ARP Cache Poisoning
ARP (Address Resolution Protocol) is a protocol running

on all the TCP/IP based network devices including our daily
hosts and routers. When a packet goes cross Internet, it is
being forwarded according to the IP addresses of NICs. At
lower level, a packet has to go through each physical link
which is addressed using MAC addresses. The ARP is uti-
lized to map an IP address to the corresponding MAC ad-
dress. A device maintains an ARP cache for this mapping.
When a sender has a message to send to a destination, the
sender obtains the IP address from the routing table of the
receiver at the other end of the physical link in the same
LAN. It then lookups its ARP cache. If there is an entry for
this IP address, the sender forms a frame using the destina-
tion’s MAC address and send; if not, the sender broadcasts
an ARP request for the destination IP address and only the
destination responds with its MAC address. The entry in
ARP cache is added upon receiving the response. The time
stamp of an entry is refreshed every time it is used. An entry
expires if it is not used for a certain period of time.

The entries of the IP-to-MAC addresses mapping can be
altered by an attacker. A well-known attack is the ARP
cache poisoning which is commonly done by sending to a
computer’s network interface with spoofed ARP packets.
Two possible methods can be used to exploit the ARP func-
tion in a LAN setting. It starts by flooding a Ethernet LAN
with spoofed ARP packets. One method results in hijack-
ing legitimate traffic and also denial of the service of the
gateway. The attacker will associate its MAC address with
another IP address, for example, the default gateway’s IP
address. Such attack can open to way for the attacking node
to intercept the messages which are originally intended to
the default gateway. The other method results in a denial of
the service of the gateway. The attacker will send an ARP
response to associate a gateway’s IP address with a mean-
ingless MAC address. This causes any packets that send to

the gateway not being able to reach the gateway network
interface card due to the wrong MAC address. This denial
of the service attack leads to the factor that any packets go
through this gateway will fail.

3.2 Tools
We use common network testing tools for our experiments,

for examples, ping and iperf. Ping is a computer network
tool to test the reachability of a destination host and the
round-trip time by sending ICMP echo request packets and
waiting for the respond. Iperf is a popular network testing
tool that can create TCP and UDP data streams and mea-
sure the throughput of the connection. Iperf allows a user
to set various parameters to meet the requirements for net-
work performance testing. Due to the popular functions and
measurement metrics they provide, these tools are also in-
cluded in integrated instrumentation and measurement ser-
vices of GENI for experimenters [7][8]. In particular, our
experiments use a software named netwox, an open source
software to sniff and spoof network packets of all network
layers. Although many other tools like Wireshark are avail-
able for sniffing and spoofing, netwox is easy to install in
ProtoGENI and easy to view results through plain texts in
Linux terminals. Especially, netwox includes a tool set and
it uses different numbers to represent different network tools
making it an easy mean for attacking experiments.

4. EXPERIMENTS AND RESULTS
In our experiments, we use two slices. One slice acts as

the launch pad for the exploitation experiments. And the
other slice acts as a normal experiment slice. There are a
few challenges for conducting the exploration experiments.
The first challenge comes from factor that for the ARP table
based attacks to work, an attacker needs to know the system
environment, e.g, the hosts and routers within the LAN.
The second challenge is that the ARP cache is softstate. It
flushes stale entries periodically. Thus an attack shall have
a way to sustain the damage over a longer period of time. In
addition, ProtoGENI offers hardware facilities as both wired
aggregate and wireless aggregate based on Emulab. Our
experiments are performed for the two aggregates because
they represent the two general types of network research
in wired Internet and wireless networks. The two types of
aggregates also represent many other available resources in
GENI. The challenge is that these two types of aggregates
differ in their way for offering experiments.

In this section, we first study the feasibility of learning the
experiment environments of both wired and wireless facili-
ties. Then we introduce the experiments with ARP proto-
col. In our experiment design, we use scripts to sustain the
attacking damage.

4.1 Feasibility
For the ARP table based attacks to work, an attacker

needs to know the hosts and routers within the LAN. In Pro-
toGENI, we investigate methods that are feasible to obtain
these information in the wired facility and also in wireless
testbed.

4.1.1 Learning in Wired Facility
When an experiment is created and started at ProtoGENI,

it is allocated various resources for the requested network
topology and conditions. Figure 2 shows the system and net-

Figure 2: Experiment environment (cited from Em-
ulab Tutorial [1])

Figure 3: ARP Cache before Attack

work environment an user is exposed to in an experiment. It
depicts an experimental plane with two hosts and one router
(in red) and links in two subnets (in red, 10.1.1.0and10.1.2.0
). Each experimental node connects to a shared control net-
work (in blue). Note that the backend control plane’s inter-
faces’ IP addresses belong to the same subnet 155.101.132.0.
Thus, an experimental node is in the same LAN with the
control network and other experimental nodes through the
control plan, while each has interfaces in data plan according
to experiment topology. The ARP cache at each node for
the control network will then store entries that map the IP
addresses to corresponding MAC addresses of the control
network gateway and the experimental nodes. The nodes
also open to Internet with external IP addresses.

We tried with a real experiment which has a two-node
configuration. One node’s ARP cache is shown in Figure
3, we see there is a ”control − router.emulab.net” entry in
the ARP cache. Checking the routing table, we found the
IP address for this interface is 155.98.36.1. Meanwhile, the
routing table also indicates that this node can be accessed
by SSH with an IP address of 155.98.36.39 from external.

4.1.2 Packet Sniff in Wireless Testbed
The attacker who has a wireless node in ProtoGENI can

easily sniff a packet in the air from other wireless experi-
ments with netwox. With the sniffed packet, attackers will
get enough network information about both the sender and
receiver, such as IP addresses and MAC addresses, which
can be used to launch attacks.

We perform the following experiment to test the feasibility
of sniffing a packet from the air. In this experiment, two
slices are created. Each slice has two wireless nodes named
nodew1 and nodew2. They connect using 802.11g standard
in the topology of nodew1 −−nodew2. One slice named as
experiment1 is a normal experiment slice, the two nodes are

installed with iperf. While the other slice experiment2 acts
a launch pad for an attacker, netwox is installed on nodew1.
The four nodes are located in the following physical positions
(Figure 4). The mapping of the physical nodes to the slices
are shown in Table 1. Both experiments choose channel 14.

Figure 4: Wireless node locations

Table 1: Resource Allocation
Slice Names Nodes Physical Nodes Acting

experiment1
nodew1 pc39 iperf
nodew2 pc28 iperf

experiment2
nodew1 pc35 netwox
nodew2 pc27

Experiment Steps: First, in the slice experiment1, iperf
server runs on nodew2 and iperf client runs on nodew1 to
connect to the iperf server. Then, nodew1 of experiment2
uses the No. 7 tool of netwox to sniff the TCP packets in
the experiment1. The following command is used to sniff the
TCP packet in the air:

netwox 7 − d ath0 − t ,

where ath0 is the wireless interface and -t is used to sniff
TCP packet. The packet sniffed is shown in Figure 5.

Figure 5: TCP Packet Sniffed

Figure 6: Target at experiment node

In this sniffed packet, we obtain information about both
server and client, including IP address, MAC address and
time stamp of the transmission. The information can be
used to further exploration. Packet sniff in wireless can only
be performed when both experiments are using the same
channel. However, it is easy to learn which channel is being
used by other experiments from Emulab website. Typically,
information on which channels are in use at each floor is
provided.

4.2 Experiments in the Wired Facility of Pro-
toGENI

Two slices with slice named experiment1 and experiment2
are created. Experiment1 is alive with a single node node1
(physical node pcwf146) installed netwox for conducting at-
tacking experiments. Experiment2 is a pending slice for ac-
quiring a specified node pcwf142 as its experimental resource
(Table 2).

Table 2: Resource Allocation 2
Slice Names Nodes Physical Nodes Acting
experiment1 node1 pcwf146 netwox
experiment2 pending pcwf142

The experiments will perform denial-of-service attack through
ARP cache poisoning. That will cause failures of using
GENI for experimentation. There are two ways to achieve
the DOS attack. For method 1, the attacker tries to poison
the ARP entry of the control router in an experiment node;
For method 2, the attacker tries to poison the ARP entry
of an experiment node in the control router. For each of
the method, if the attack was successful, the victim exper-
iment node would lose its connection to the control-router
node and hence this resource would no longer be available.
In our experiment setting, the user’s request to acquire this
”dismissed” experiment node for experiment2 would not be
satisfied.

4.2.1 Attack an experiment node
The experiment scenario is shown in Figure 6. From node1

in experiment1, the attacker can get pcwf142’s MAC ad-
dress by ping pcwf142. A new ARP entry for pcwf142 will
be added to node1 ’s ARP cache, and we get the MAC ad-
dress 00 : 19 : B9 : 23 : AD : 69 of pcwf142. control −
router.emulab.net with 155.98.36.1 is still the router inter-
face in node1.

Figure 7: Endless ARP Cache Poisoning

Figure 8: Target at control-router

Then we use the netwox tool No. 33 to poison pcwf142’s
ARP cache by spoofing a faked MAC address for control-
router. The tool will send an ARP message to pcwf142. In
order to prevent the expiration of the spoofed ARP entry,
we use a shell script to run the netwox command endlessly.
See Figure 7 for details. We would like to modify the MAC
address of the control router to 0C : 0C : 0C : 0C : 0C : 0C
in pcwf142’s ARP cache. Then we try to acquire the pcwf142
for experiment2 to see if the resource is still available without
any exception.

Experiment Result and Analysis: We observed that the ex-
periment2 still acquired the pcwf142 as its experiment node.
We checked the ARP cache of pcwf142 and found the ARP
entry for the control-router is not changed. The is because
that the ProtoGENI facility sets the ARP entry of the con-
trol router to be a static entry at the experimental nodes
for virtualization. It protects ProtoGENI from being at-
tacked by this specific DOS attack. The result suggests that
modifying an experimental node does not effectively launch
a DOS attack. Through this experiment, we validate that
ProtoGENI is safe in terms of this specific attack.

4.2.2 Attack the control-router
In this experiment, we exploit the control router directly

by poisoning its ARP entry about an experiment node. If
this experiment could be successful, we realize the same goal
for cutting the connection between the control-router and
the experiment nodes. The users could not acquire the de-
sired resources. The experiment scenario is shown in Figure
8 with the same two slices experiment1 and experiment2.

We created another shell script in node1 of experiment1
to launch the endless ARP cache poisoning to attack to the
control router to modify the ARP entry of pcwf142. Then,
experiment2 tries to get pcwf142 as its resource node.

This time, the result is inclined to the attacker and pcwf142
is no longer available. At this stage, we cannot check the
ARP cache in the control-router to verify the result di-
rectly. But we observed a series of warning and error mes-
sages returned in the user’s local interface which indicate

that pcwf142 can not be used. The messages read like:
“ pcwf142 appears wedged; it has been 6 minutes since it
was rebooted.”, “node reboot−reboot node: pcwf142 appears
dead; will power cycle.”, “ERROR : node reboot − reboot:
Powercyle failed for pcwf142” and “pcwf142 may be down.”

The experiment shows that the denial-of-service attack is
possible.

4.2.3 Generalization and security analysis
The above results show that the specific attack to the

control plan (namely, poisoning ARP table at the control
router) is possible and can result in failure of using the ex-
perimentation resources. However, to what extend such an
attack can cause troubles to ProtoGENI or GENI? Here we
discuss the minimum conditions to launch such an attack.

Three conditions are used in our experiment (acting as
attacker): (1) using an active slice, (2) learning the envi-
ronment, (3) a tool. The condition (3) is not a constraint
because open-source tools exist in Internet. For condition
(2), our other experiments have explored a couple of ways
to learning the names of the physical nodes and also to learn
the IP addresses of the entire testbed facilities. The reason
is that the name space and IP address space are maintained
with easy-to-follow rules for the simplicity of management,
which is desired for GENI. Thus, an attacker can easily guess
or probe (e.g., through ping) the name space and IP address
space of the entire facility. The ping method we used in our
experiments helps to learn the MAC address when an IP
address is known. A node can then learn all the MAC ad-
dresses. Further, without knowing a specific physical node,
an attacker can poison the ARP table at control router with
a brute force of trying all the IP addresses in the address
space. Thus, the condition (2) of learning the environment
is not a limitation to an attacker.

To fulfill the condition (1) of using an active slice, an ex-
perimenter uses the authorization and authentication steps
of ProtoGENI. He will obtain certificates and keys for ex-
periments. Afterwards, he would keep them safe. The vul-
nerability here is similar to our daily use of a PC. For the
attacker, this is the minimum condition for launching the
attack.

4.3 Experiments on wireless nodes
ProtoGENI supports resources for experimenters to de-

sign and implement wireless network experiments. Different
from experiments of wired connection, the open nature of
wireless media makes it easier for one experimenter to in-
tervene others’ experiments. Though security and privacy
policies are clearly given to the experimenters, however, to
an uninformed user or a purposeful user, the listed policy
items are vulnerabilities. By sniffing packets of a wireless
communication, we can get both MAC address and IP ad-
dress of the communication pairs. So it will be a potential
vulnerability for attackers to launch the ARP cache poison-
ing. Here we design a demo experiment showing how an
ProtoGENI user can use ARP cache poisoning to attack an-
other experiment slice with the netwox tool sets.

In this experiment, we use the same two slice experiment
as previously used for performing packet sniffing in wireless
tested (see Table 1 and Figure 4).

In this experiment, we first ping from nodew2 to nodew1
in slice experiment1. This will generate a series of ICMP
packets in the wireless channel between the two nodes. Then,

Figure 9: Ping Packet Sniffed

Figure 10: Launch ARP Cache Poisoning

we use the No. 7 tool of netwox to sniff the packet of the
communication in experiment1. So in nodew1 of experi-
ment2, the following command is used:

netwox 7 − d ath0 .

The ath0 is the wireless interface used for sniffing. The
packet sniffed is shown in Figure 9.

From the sniffed packet, we know the source’s IP address
is 10.1.1.2 and MAC address is 00 : 17 : 9A : C3 : 65 : 24;
the destination’s IP address is 10.1.1.3 and MAC address is
00 : 17 : 9A : 08 : C1 : 79. We validate this information
by checking the ARP table in nodew1 of experiment1, we
observe that the MAC address for nodew2 (10.1.1.3) is 00 :
17 : 9A : 08 : C1 : 79, which is the same as shown in the
sniffed packet.

In nodew1 of experiment2, we use No. 33 tool of netwox
to launch ARP cache poisoning to attack nodew1 in exper-
iment1 as shown in Figure 10 which modifies the MAC ad-
dress of nodew2 to 0C : 0C : 0C : 0C : 0C : 0C. Figure
10 shows the table after the attack. In this case, any traffic
sending to nodew2 will not be received by it. This results in
DOS at nodew2.

Again, in nodew1 of experiment1, we validate by checking
the ARP table again as seen in Figure 11. The ARP table
is successfully modified.

4.3.1 Generalization and security analysis
It is clear that the MAC address of nodew2 at nodew1 ’s

ARP table is changed to 0C : 0C : 0C : 0C : 0C : 0C.
This results in DOS at nodew2. This experiment is different
from the previous experiment targeting at the wired facility,
in that, the victim slice is active when performing attack-
ing. This gives convenience to the attacker for sniffing the
IP addresses and corresponding MAC addresses from the
air. With this information, attacker can easily do an ARP
cache poisoning attack. In real case, the experient2 would

Figure 11: ARP Cache after Attack

be owned by another ProtoGENI user. The experiment will
experience failure.

Again, for an attacker to perform the ARP cache poison-
ing attack in the wireless testbed, he must use an active
slice. As we analyzed previously, the vulnerability for Pro-
toGENI in this case, will be subject to the security of the
experimenter’s authentication materials.

Some mechanisms can be adopted to prevent the ARP
cache poisoning in ProtoGENI. One effective way is to use
a static ARP table for control plane interaction which is
quite reasonable in GENI where resources need to be avail-
able at all the time. Another approach can be to instal an
inspection software that can monitor Ethernet activity and
report suspicious messages via email immediately. One such
software can be Arpwatch.

5. CONCLUSIONS
In this paper, we introduce one security aspect of Pro-

toGENI, namely the potential security vulnerability in the
control plan. Security vulnerability is analyzed using a prac-
tical experimental way through our work. We have shown
the possibility of an attack through ARP cache poisoning.
We have reported our detailed analysis and experiments that
exploit both the wired facility and wireless facility of Proto-
GENI. We discussed conditions for such an attack according
to the results and suggested possible improvements on Pro-
toGENI security.

6. REFERENCES
[1] Emulab Tutorial,

http://www.protogeni.net/trac/emulab/wiki/Tutorial.
[2] GENI Global Environment for Network Innovations Spiral 2

Overview.
http://groups.geni.net/geni/attachment/wiki/SpiralTwo/
GENIS2Ovrvw060310.pdf.

[3] GENI Global Environment for Network Innovations Spiral 2
Security Plan,
http://groups.geni.net/geni/wiki/SpiralTwoSecurityPlans.

[4] ProtoGENI wiki page,
http://www.protogeni.net/trac/protogeni.

[5] S. Schwab, GENI Spiral Two Project: Distributed Identity
and Authorization Mechanisms,
http://groups.geni.net/geni/wiki/ABAC.

[6] X. Hong, F. Hu, Y. Xiao. GENI Spiral Two Project: GENI
Experiments for Traffic Capture Capabilities and Security
Requirement Analysis,
http://groups.geni.net/geni/wiki/ExptsSecurityAnalysis.

[7] INSTOOLS,
http://groups.geni.net/geni/wiki/InstrumentationTools.

[8] OnTimeMeasure,
http://groups.geni.net/geni/wiki/OnTimeMeasur.

[9] W. Du, T. Daniels, N. Gaubatz, P. Ning, G. Spafford. SEED
Project. http://www.cis.syr.edu/ wedu/seed/.

[10] S. Peisert. GENI Spiral Two Project: The Hive Mind:
Applying a Distributed Security Sensor Network to GENI ,
http://groups.geni.net/geni/wiki/HiveMind.

[11] GENI: Exploring Networks of the Future,
http://www.geni.net/.

