ExptsSec: S2.c. Report on Experimentation Exploiting Vulnerabilities and
Validating Vulnerability Hypotheses

Xiaoyan Hong, Fei Hu, Yang Xiao
Jingcheng Gao, Dawei Li, Sneha Rao, Fnu Shalini, Dong Zhang
University of Alabama
July 09, 2010

l. INTRODUCTION

This document reports many experiments conducted
following the security issues and experiments design
document (see the project Milestone#2 deliverables [1]).
The experiments show unique ways in approaching the
issues listed in [2]. The experiments are not overlapped
mostly. A couple experiments are the validations and
extensions of the experiments reported in Milestone#2
deliverables [2].

Suggestions are given to improve the development of
ProtoGENI in its security from an experimenter’s view
point. Noticeably, some issues that we study here pertain
to the current developing version. With the rapid pace of
ProtoGENI development, the security issues mentioned
in this document could be solved.

The rest of the document is organized as follows.
Section Il presents our work investigating the interactions
at runtime with ProtoGENI control framework. Section
Il gives experiments exploiting ProtoGENI resource
allocation. In Section IV, more details on DoS attack to
Emulab resources at run-time is described. Section V
focuses on attacking authentication and experiments on
stolen credentials. Section VI includes more details on
port scan attack from inside/outside ProtoGENI nodes. At
last in Section VII, we summarize the experiment results
and suggestions.

I[l. EXPERIMENTER’S INTERACTION WITH THE
CONTROL FRAMEWORK

A. Run- time security parameters

The experiment can be created with the steps shown in
Figure 1. It usually involves using provided test scripts.
All ProtoGENI authorities (CH, AM and SA) present an
XMLRPC interface [4] over HTTP and SSL. And all the
user requests are made via a URL register within the
clearinghouse for each of the services. A registered user
can interact with these XMLRPC servers using the
python code provided by the official ProtoGENI wiki
site.

ProtoGENI allows only SSH login to the nodes the
user acquires through the steps. Users have to upload
their SSH public keys to the slice authority. When trying
to login to a VVnode, user has to SSH to a correct port
different from the default port number 22 (the port
number can be found in manifest). These ports could
open vulnerability to port scan and exploration.

Figure 1 shows the steps and communications for a
ProtoGENI experiment. In the Figure, the security
related parameters are illustrated. This figure provides
an overview for where threats could be introduced. In
addition, the storage location of the SSL Certificate and
SSH Keys makes it easier for being stolen or tampered
with. If stolen, attackers can access to the experimental
nodes being used by legal users. From these nodes,
more security attacks could be performed.

SA(https://
www. emulab. net: Self_Credential)
443/protogeni/

amlrpe/sa)

Figure 1. Steps for Experiment with Securiry Parameters

B. Automated exploiraiton with tools

We have developed several automated tools for our
experiments. The tools are developed in order to mimic a
real attacker, who would be greedy and efficient in

grabbing ProtoGENI network information and resources
to make the attacking powerful.

Assume the attacker can intrude a ProtoGENI user, or
active slices or himself is a malfunctioning user. The
purpose is to perform DoS attack by requesting as many
resources as possible. In addition, the attacker is
cautious about its action, he may choose to disguise his
action with some randomness.

We describe the steps of our experiments with the
tools to perform possible DoS attack and security issues
below:

1) Use automated experiment tools to register many
slices and create cooresponding slivers.

The tool AuSlice.py can help user register multiple
slices at the same time. Another tool AuSliver.py can be
used to create slivers simultaneously on previously
registered slices. ProtoGENI Control Framework (CM)
works well for multiple experiment creation until the last
slice that the resources acquired for the extra slivers
(more than one) can not be met. Usually, the user cannot
be logged into the sliver with SSH.

2) Use RSpec henerating tool to create various
topology

genRspec.py can generate RSpec of certain topology
types quickly with the number of nodes as an input.
There are 4 types of topology can be created: line
topology, ring topology, arbitrary topology and random
topology. Nodes type can also be chosen as VVnodes or
normal nodes. User can also choose to install Iperf in the
nodes on demand.

3) Security issue:

One issue is that when multiple slivers are created,
the SSH public key may not be passed to the all
resources properly at the same time.

Another issue is to disguise attacking behavior. The
attacker can use the tool to generate different Rspec of
different topologies at different slices to be combined
with the above step. These different topologies help
him with more disguises than a fixed topology used by
many different slices. He could always use the same
Rspec with a large topology, but that raises his chance of
being discovered.

The third issue is to maximize its attacking gain.
Due to the dynamic usage of the GENI resources, the
attacker intends to use as much residual recourse as
possible. So he may try different topology sizes to
approach the current available resource. A simple
adaptation algorithm can serve this purpose, e.g., binary
search algorithm.

In addition, our early experiments have shown that
ProtoGENI CM does not allow multiple gettickets from
one slice. It always takes the latest Rspec for the current
slice. This is to say that automated tool to generate
multiple tickets with in a slice doesn’t help the attacker.

C. Flash Interface

ProtoGENI now allows user to create slices and
slivers with a flash interface. An authenticated user can
download his/her SSL certificate from user profile page
on the Utah Emulab and save the certificate into the web
browser. Then the user can create experiment using the
browser.

Security Issues: The flash interface really provides a
convenient way for researchers to do experiment with
ProtoGENI facilities. However, once the SSL certificate
is imported into the web browser, any user can do
experiment using this particular browser in the case that
the owner of the web browser (authenticated user) leaves
the operating system unlocked as there is no further
identity check before a user can get a full control as an
authenticated ProtoGENI user.

Possible Suggestions: The flash interface should
provide a further check of the users' identity before he
can create a slice using the interface immediately.

I1l. EXPERIMENTS WTH RESOURCE ALLOCATION

Here we describe experiments that exploits the
virtualization mechanism inside the ProtoGENI where
resource allocation is concerned. In experimentation, the
security issues are related to the ProtoGENI architectural
building blocks in the virtualization.

A. Isolation of Slices

A slice provides the networked resources for an
experiment. Physically, one slice shares hardware with
other slices through virtualization. From control
framework point of view, slices are totally separated,
isolated from each other. Each one is contained. Control
framework should not allow nodes belonging to different
slices communicate with each other even though they are
created by the same user. Our experiment tries to test the
isolation function of the control framework.

Experiment Setup: In this experiment, three slices
with slice names testl, test?2 and test3 are created with
the same topology of two Vnodes and a link of
bandwidth 100Mb/s as follows:

sharedl ---- shared2

Tool Iperf is installed on both sharedl and shared 2.

All the resources acquired are summarized in TABEL 1.

Experiment Steps:
First, only one Iperf server is running in slice testl at
the node named shared1 with the command:

iperf —s
TABLE I. RESOURES OF THE SLICES

Node Slice Hostname Port

Name Name Number
sharedl testl pcl75.emulab.net 32058
shared?2 testl | pcl72.emulab.net 32058
sharedl test2 | pcl72.emulab.net 32570
shared? test2 pcl75.emulab.net 32570
sharedl test3 pc263.emulab.net 33850
shared? test3 pcl02.emulab.net 33850

Second, at nodes shared2 of both slices testl and
test2, we try to connect to the server sharedl with the
following command:

iperf —c sharedl

Then we observed from the screen of the Iperf server
(sharedl at testl) that both of the clients connected to
the server eventhough they are not at the same slice, i.e.
the nodes can communicate across slices! In Figure 2,
we illustrate our experiment with the screen captures of
the four nodes. The left sides are the Iperf server and
client in testl and the right side are those in test2. Figure
2 shows that the server sharedl in testl (slice1892) (the
upper left terminal) is connected by clients of ports in the
sequence (numbers in the red circle):

43589, 53256, 53257, 43590

The first client (shared2 in testsl (slicel892) the left
lower terminal) connected to server with sequence
(numbers in the blue circle):

... 43589, 43590 ...

The second client (shared2 in test2 (slicel893) the
right lower terminal) connected to server with ports of
the sequence (numbers in green circle):

. 53256, 53257...

B lidawel @shared Lslice1892.Genislices.emulab.net:/usr - | =) < | JERIIELL] red L 3iice1893
File Edit Yiew Jerminal Help File imr 2Ew Terminal ﬁ!\p
N\ local 10.10.1.2 port 5001 connected with 10.10.1.1 port (=]l nake install-exec-hook
make[4]: Entering directory */local/iperf-2.0.8
make[4]: Nothing to be done for 'install-exec-hook'.
make[4]: Leaving directory '/local/iperf-2.0.8'
make install-data-hook
e(4]: Entering directory "/local/ipert-2.8.8
]: Mothing to be dane for 'install-gata-hook'.
ke[4]: Leaving directory /local/iperf-2.0.8
Leaving directory */local/iperf-2.8.8"
]: Leaving directory "/local/iperf-2.6.8"
[1]: Lonvimg directory - flacal/ipert.2.0.9
ared] iperf-2.6.8] cd Jusr/bin
ar:dl bin)s [l
rad2.slicel893.Genisli

Fle Edit View Temninal Help
[3] local 18.18.1.1 port[43589]connected with 18.16.1.2 port \ 1\ local 16.10.1.1 port [B3Z5) connected with 10.18.1.2 port
5061

EniS|ices emulabinet: usrl == |

[4] 0.6-10.8 sec 112 MBytes 94.8 MbAT:
5] JLocal 16.10.1.2 port 5661 connected m(h 19 10.1.1 port

0.6-18.0 Sec 112 MBytes 94,1 Mbits/sec
J|tacal 10.10.1.2 port 5601 connected with 10.19.1.1 port

112 MBytes 94.1 Mbits/sec
1 Lum 1e w12 2 port 5601 comnected with 16.10.1.1 port

8.6:16.8 sec 117 MBytes 84.8 Mbits/se

nislices.emulab.net:/use/ - 0

[31 e.0-10. B e 112 MBytes 94.1 MBitS/sec \ J\ 0. B 10.0 sec 112 MBytes 94.2 Mbits/sec
re I

[Udaveis 2 binl$./iperf -c sharedl ared2 bin]$./iperf -c shared]
Lm 1t connect mg 1o sharedl, TCP port 5861 Client connecting to shared, TP port 5661
TCP window size: 16.0 KByte (default) TCP window size: 16.0 KByte (default)

[3] local 10.18.1.1 port 43598 Jronnected with 10.18.1.2 port. \ J\ local 18.10.1.1 port|33257) connected with 10.10.1.2 port

[3] 0.0-10.0 sec 112 MBytes 94.1 Mbits/sec s \ J\ S10 s L2yt 9.2 Meltsfsec
[Vidaweigshared? bin]$ [] [lidaweigshared2 bin)$ []

Figure 2. Cross-slice Communication for Testl and Test2

However, it seems that the problem could due to the
fact that the two slices share the same physical resources
(pcl75 and pcl72). So we performed the same
experiment with testl and test3. We obtained the same
result as shown in Figure 3.

Further, we tried other possibilities including
changing Vnode to a normal node, connecting to the Iperf
server with IP address and using different node names for
different slices (no matter whether it is a VVnode or a
normal node). The results are summarized in TABLE II.
It shows that there is only one setting that the cross-slice
communication can occur.

Experiment Analysis:

The result of this experiment shows that the cross-
slice communication can really happen under ProtoGENI
control framework when the nodes are Vnodes with the
same node name and Iperf to a server through the node
name. This may be caused by the control framework
implementation of Vnodes and the mapping of the
names.

Suggestions: The developers of ProtoGENI control
framework may need a fix at its design and
implementation for Vnode according to its different
mechanism.

B. Nonexclusive use of resources

ProtoGENI user can specify a bandwidth of the link
between two nodes. However the link between two
Vnodes (sharing the same physical node) is in fact using
a loopback (bridged) method as mentioned in [3]. So the
link between two Vnodes or link between a VVnode and a
normal node may reveal different performance
characters.

awei@shared] slice1892.Genislices emul
f\le Edt view renmm\ Help

FESTTIEEIEN @ 1idawei@shared.slice1895.Genislices.emulab.netiusr |0
file Edit Yiew Terminal Help
local 10.10.1.2 port 5801 connected with 10.10.1.1 part

4 0.8-10.0 sec 112 MBytes 94.8 Mbits/sec
local 16.18.1.2 port 5881 connected with 19.18.1.1 port

[
[5
5 0 sec 112 MBytes 94.1 Mbits/sec
|La tocal 16.10.1.2 pors SGbL connected with 16.18.1.1 port 4 s.es. e T MBytes 94,1 Mbits/sec
SuMl] 0.0:18.0 sec L1z MBytes 4.1 Muita/sec
[aomose m2 MBytes 94.1 Mbits/sec

|11 local 16.10.1.2 part 5881 connected with 16.16.1.1 port
43590 [6]] 6.6-10.0 sec 112 MBytes 94.1 Mbits/s

[5] 0.8-10.0 sec 112 MBytes 94.8 Mbits/sec 4] lu[al 10.10.1.2 port 5081 connected with 18.10.1.1 part

-
[lma-e\@cnarem mr\]5 l 9.0-10.0 sec 112 MBytes 94,9 Mbits/sec

[Vidawei@<hared slice1882.GeniSlicas.emulab netiusr]| |01 x| @ lidawel G=hared2.slice1898.GeniSlices.emulab.netusr — || 0]
Ele Edt Yiew Jenminal Help

File Edit Yiew Terminal Help
I 2l “local 10.10.1.1 port[7a7L]connected with 10.18.1.2 port
500

| 3\ local 10.18.1.1 port[44978] connected with 16.10.1.2 port

write2 al'lsd Connection reset by peer
[0.0 sec L2 Meytes 4.2 Mhits [3] 3.0 sec 11.3 KBytes 3.6 Kbits/sec
[melamarm bind$./ipe redl [1Lidaw mmm:? binls . /iperf -c shared]

(1: nt connecting to s'mpnl KP part 5uai
TCP window size: 16.0 Kbyte (defoult)

leen(connecting 1o sn
TCP window size: 16.0 K

131 local 16.10.1.1 por w--nrc;cu with 10,10.1.2 port| ||| 3] local 16.10.1.1 port (SiaTijconnected with 16.10.1.2 port
5001 | 5001

[3] 0.6-10.8 sec 112 MBytes 94.2 Mhits/sec
[Lidaweigshared? bin)$ [

Figure 3. Cross-slice Communication for Testl and Test3

| [3] ©.8-10.8 sec 112 MBytes 94.1 Mbits/sec
[lidawei@shared? bin]$

TABLE II. CROSS-SLICE EXPERIMENTS RESULT
Vnodes or Iperf to the Same node
Normal server with name or Result

nodes node name or different
IP address node name
Vnodes Node name Same name N
Vnodes IP address Same name X
Vnodes Node name Different X
name
Normal Node name Same name X
nodes
Normal IP address Same name X
nodes
Normal Node name Different X
nodes name

Experiment Setup: This experiment has two Vnodes
and one normal node with following topology:
sharedl ---- shared2 ---- geniO

The node sharedl (hostname: pcl02.emulab.net &
port number 31290) and shared2 (hostname:
pc263.emulab.net & port number 31290) are VVnodes and
geniO (hostname: pc204.emulab.net & port number 22 as
default SSH port number) is a normal node. The link
bandwidth between the Vnodes and between shared 2
and geniO are both 100Mb/s.

Experiment Steps:

First, we try to ping from sharedl to shared2 and
from shared2 to sharedl. We have the following result as
shown in Figure 4 and Figure 5. The two results show
that the delay variances are obvious.

[lidawei@sharedl ~1$ ping shared2
PING shared2-1linke (10.10.1.1) 56(84) bytes of data.

64 bytes from shared2-linke (10.10.1.1): icmp_seg=1 ttl=64 time=6.31 ms

64 bytes from shared2-linke (10.10.1.1): icmp_seq=2 ttl=64 time=3.64 ms

64 bytes from shared2-link® (10.18.1.1): icmp_seg=3 ttl=64 time=2.63 ms

64 bytes from shared2-1inke (10.10.1.1): icmp_seg=4 ttl=64 time=3.73 ms

64 bytes from shared2-1inke (10.10.1.1): icmp_seq=5 ttl=64 time=1.7¢ ms/ N
64 bytes from shared2-linke (10.10.1.1): icmp_seq=6 ttl=64 time=1.74 ms

64 bytes from shared2-linke (10.10.1.1): icmp_seq=7 ttl=64 time=1.77 ms

64 bytes from shared2-link® (10.18.1.1): icmp_seg=8 ttl=64 time=2.86 ms

64 bytes from shared2-1inke (10.10.1.1): icmp_seg=9 ttl=64 time=1.83 ms

64 bytes from shared2-1inke (10.10.1.1): icmp_seq=1@ ttl=64 time=1.86 ms

64 bytes from shared2-linke (10.10.1.1): icmp_seq=11 ttl=64 time=2.97 ms

64 bytes from shared2-linké (16.16.1.1): icmp_seg=12 ttl=64 time=1.94 ms

64 bytes from shared2-1linke (16.10.1.1): icmp_seg=13 ttl=64 time=3.03 ms

64 bytes from shared2-1inke (10.10.1.1): icmp_seq=14 ttl=64 time=2.00 ms

64 bytes from shared2-1inke (10.10.1.1): icmp_seg=15 ttl=64 time=3.09 ms

64 bytes from shared2-linke (10.10.1.1): icmp_seq=16 ttl=64 time=3.11 ms

-- shared2-1ink® ping statistics ---
16 packets transmitted, 16 received, 0% packet loss, time 14998ms
rtt min/avg/max/mdev = 1.705/2.767/6.314/1.139 ms =

Figure 4. Ping From shared1 to shared2

[lidawei@shared2 ~]$ ping sharedl

PING sharedl-linke (10.10.1.2) 56(84) bytes of data.

64 bytes from sharedl-1inke (10.10.1.2): icmp_seg=1 ttl=64 time=1.40 ms
64 bytes from sharedl-link® (10.10.1.2): icmp_seg=2 ttl=64 time=2.80 ms
64 bytes from sharedl-linke (10.10.1.2): icmp_seg=3 ttl=64 time=1.94 ms

64 bytes from sharedl-link® (10.10.1.2): icmp_seg=4 ttl=64 time=2.97 ms

64 bytes from sharedl-linke (10.10.1.2): icmp_seg=5 ttl=64 time=4.85 ms
64 bytes from sharedl-linke (10.10.1.2): icmp_seq=6 ttl=64 time=2.21 ms
64 bytes from sharedl-link® (10.10.1.2): icmp_seg=7 ttl=64 time=3.23 ms
64 bytes from sharedl-linke (10.10.1.2): icmp_seq=8 ttl=64 time=1.24 ms
64 bytes from sharedl-link® (18.10.1.2): icmp_seq=9 ttl=64 time=2.41 ms
64 bytes from sharedl-l1inke (10.10.1.2): icmp_seg=1@ ttl=64 time=2.42 ms
64 bytes from sharedl-link® (10.10.1.2): icmp_seg=11 tt1=64 time=1.42 ms
64 bytes from sharedl-1inke (10.10.1.2): icmp_seg=12 ttl=64 time=2.59 ms
64 bytes from sharedl-1ink® (10.10.1.2): icmp_seg=13 ttl=64 time=1.67 ms
-- shared1-1inke ping statistics ---

13 packets transmitted, 13 received, ©% packet loss, time 12005ms

rtt min/avg/max/mdev = 1.244/2.337/4.851/08.784 ms [~

Figure 5. Ping From shared2 to sharedl

Then we ping from shared2 to geniO and from geniO
to shared2. The results are given in Figure 6 and Figure
7. Figure 6 shows that the delay variances from a VVnode
to a normal node are mostly small. The initial long delay
exists in the many repeated experiments.

Experiment Analysis:

From the results of this experiment we see that when
pinging from a normal node to a VVnode or ping between
Vnodes, the round-trip time is not stable. This may
indicate that the network is not reliable enough for a real
network experiment.

Suggestions: the large delay variance at the Vnodes
may be because of the current virtualization technology
OpenVZ that ProtoGENI is using. Developers may
consider further potential defects when applying to a
large scale system.

[lidawei@shared2 ~]5 ping genig
PING geni-linkl {19.18.2.2) 56(84) bytes of data.
64 bytes from genid-linkl (16.16.2.2): icmp seqe=l ttl=64 time=3.38 ms

64 bytes from geni@-linkl (19.18.2.2 seq=2 ttl=64 time=1.13 ms
64 bytes from geni@-linkl (18.18.2.2 seq=3 ttl=64 time=1.20 ms
64 bytes from genio-linkl (10.10.2.2 seq=4 ttl=64 time=1.12 ms
B4 bytes from genid-linkl (18.18.2.2 cmp_seqs5 ttls6d times1.19 ms
64 bytes from genidé-linkl (18.18.2.2 cmp_seqeb ttl=64 time=1.21 ms
64 bytes from geni@-linkl (19.18.2.2 seq=7 ttl=64 time=1.23 ms
64 bytes from geni@-linkl (18.18.2.2 seq=8 ttl=64 time=1.18 ms
64 bytes from genio-linkl (10.10.2.2 seq=9 ttl=64 time=1.19 ms
B4 bytes from genid-linkl (18.18.2.2 mp Seqsll ttls6d times1.27 ms
64 bytes from genid-linkl (16.18.2.2): icmp seqell ttl=64 time=1.19 ms
64 bytes from geni@-linkl (18.18.2.2): icmp_seq=l2 ttl=64 time=1.23 ms

geni@-linkl ping statistics
12 packets transmitted, 12 received, 8% packet loss, time 10999as
rit min/avg/max/mdev = 1.123/1.382/3.385/0.606 ms

Figure 6. Ping From shared?2 to geni0

[lidaweipgenie ~]$ ping shared?

PING shared2-linkl (18.18.2.1) S6(B4) bytes of data.

64 bytes from shared2-linkl (18.18.2.1): lcmp seq=l ttl=64 time=1.15 ms
64 bytes from sharedZ-linkl (18.16.2.1): lcmp seqe=2 ttl=64 time=1.52 ms
64 bytes from shared2-linkl (18.16.2 icmp seqs3 ttls64 times1.64 ms
64 bytes from shared2-linkl (18.10.2.1): icmp _seq=4 ttl=64 time=1.54 ms
64 bytes from shared?.linkl (18.18.2.1): icep seq=$ ttl=84 time=1.51 ms
64 bytes from sharedz-linkl (18.1 p_seq=t ttl=64 time=0.300 m
&4 bytes from shared?-linkl (18.1 p_seq=T ttl=64 time=1.48 ms
64 bytes from shared2-linkl (19.1 seq=d ttl=64 time=1.36 ms
64 bytes from sharedZ-linkl (18.18.2
64 bytes from sharedZ-linkl (18.18.2
64 bytes from sharedZ-linkl (19.10.2
84 bytes from sharedz.linkl (18.18.2
64 bytes from shared?-linkl (18.18.2 B

64 bytes from shared2-linkl (18.18.2.1): icmp seq=14 ttl=64 time=1.41 ms
64 bytes from shared2-linkl (10.10.2.1): ilemp seq=15 ttl=64 time=0.407 ns

seqed ttl=64 time=1.35 ms

seqsld ttls64 times1.35 ms
seq=11 ttl=64 time=0.442 ns
seq=12 ttl=84 time=1.41 ms

sharedz-linkl ping statistics
15 packels transmitted, 15 received, 0% packet loss, Uime 14018ms
rit mingavg/max/mdev = 9.487/1.742/1.643/0.416 my

Figure 7. Ping From geniO to shared?2

C. Network Stability and Stress Test

This consideration relate to network quality.
Unwanted network quality will be a potential problem
that affects experiment results which may as severe as
security problems. We perform stress tests to see if the
recourse usage is confined to its specification, to see if
other sliver creations could be affected. The software
Iperf (version 2.08) is equipped with some parameters to
test network stability and for stress test.

Experiment Setup: In the experiment, we create a
sliver with a topology:
genil ---- geni2 ---- geni3

Iperf is installed at genil and geni3.
Experiment Steps:

First, we ran the command iperf —s in genil to start
the server.

Then we ran the command iperf -c genil -t 120 -i 10
in geni3 to connect to the server genil. Here the
transmission time is set to 120s and interval to 10s. The
default window size is 16KB for TCP. Result is given in
Figure 8. The result shows that the transmission rate is
stable at around 94.0 Mbits/sec.

Further we add the -P * option of Iperf to the above
experiment. -P * is used to simulate * multi-threads to
connect the server. We used window size 128k. The
result shows that the network works well for as many as
possible threads connecting the server together. (The
default maximum upper bound is 253 threads, and when
the * is raised to 254, it will return a thread creation
failure).

Experiment Analysis:

In the Iperf client, the Linux terminal will show the
transmission rate of each thread and the total rate of all
the threads. As the number of threads increases, the
transmission rate of each thread decreases, but the total
rate keeps stable for a rate of around 94.0 Mbits/sec.

From the these results, we can see that the network
under ProtoGENI control framework performs correctly
in separating the network traffic flows when we use Iperf
to test it. So the network quality here will not be an
obstacle for researchers to carry out their experiments.

[lidawei@geni3 iperf-2.0.8]% iperf -c genil -t 120 -i 10
Client connecting to genil, TCP port 5881
TCP window size: 16.0 KByte (default
[3] local 10.10.2.2 port 32783 connected with 10.10.1.1 port 5681
3] 0.8-10.0 sec 112 MBytes 94.2 Mbits/sec
112 MBytes 93.6 Mbits/sec
112 MBytes 94.1 Mbits/sec
112 MBytes 94.0 Mbits/sec
112 MBytes 94.1 Mbits/sec
112 MBytes 94.0 Mbits/sec
112 MBytes 94.0 Mbits/sec
112 MBytes 94.1 Mbits/sec
112 MBytes 94.0 Mbits/sec
112 MBytes 94.1 Mbits/sec
3] 100.8-110.0 sec 112 MBytes 94.1 Mbits/sec
3] 110.8-120.8 sec 112 MBytes 94.0 Mbits/sec
3] 0.0-120.0 sec 1.31 GBytes 94.0 Mbits/sec
lidawei@geni3 iperf-2.0.8]s I

[

[3] 10.0-20.0 sec
[3] 20.0-30.0 sec
[3] 30.0-40.0 sec
[3] 40.0-50.0 sec
[3] 50.0-60.8 sec
[3] 60.0-70.0 sec
[3] 70.0-80.8 sec
[3] 80.0-90.0 sec
[3] 96.0-160.0 sec
[

[

[

[

Figure 8. ProtoGENI Network Stability Test

V. DOS ATTACK TO TEST PROTOGENI RUN-TIME
VULNERABILITY

We repeatedly requested ProtoGENI resources by
running C++ programs, which automatically generated
specification of the sliver XML files and created slices
and slivers. One program is responsible for creating
slices and slivers; the other is responsible for deleting the
slices and slivers after testing the results in order to give
no real trouble to the Emulab site. Fig. 9 shows the
creating slices and slivers program running at the 4"
slice and sliver

Figj9ﬂ The Cr.eating S.Iicés andShGersPrSgram Ru_hning
at the 4™ slice and sliver

& 4 SUN May 1n, 1004 PM

) KoTawp

¥ Emulab.Net - Emulab- Net... 3 | b ~

Current Experiments
36| Active

62

S L
127 Free PCs

Fig. 10 The Remaining PCs are 127 at the time of our
running the 4" slice and sliver
~| BN

. 8 |9 Emulab.Net- Emulab- Net... % |48 ~
Current Experiments
uj ‘ﬂ?
[ed
119 Free PCs
Fig. 11 The Remaining PCs are 119 at the time of our
running the 10" slice and sliver

v g 1

¥ Emulab.Net - Emulab - Net,., #8 | & ~

Current Experiments

6252 Swapped

135 Free PCs

Fig. 12 The Remaining PCs are 135 at the time of
deleting all slices and slivers
Our tests show that our programs can easily create
slices and livers. In Fig. 10 and Fig. 11, the number of
available PCs decreased from 127 (4™ slice) to 119 (10"
slice) due to the requesting resource procedure. However,
from Fig. 11 to Fig. 12, the number of available PCs
increased from 119 to 135 due to finishing deleting. We
chose the program argument 10, which means that we

only requested 10 slices. However, it is dangerous to the
ProtoGENI if we run the program with an argument of
100, 1000, etc. Also, the ProtoGENI tutorial wiki says
that the slice is a set of slivers. But our tests showed that
one slice can only contain one sliver.

In this way, we tested the vulnerabilities of the
Emulab site of ProtoGENI to Denial of Service (DoS)
issues.

We conducted another experiment for threats to the
availability of resources as follows:

e We created of as many slices as possible to

exhaust resources

e We created slices and allocated resources to

slivers

e Initial Emulab statuses : 33 free PCs; 16 slices

were created as a series of similar names like
shailslicel, shailslice2.... shailslicel6, each with a
request of 2 PCs , then we watched for 17th slice

We could not create all 16 slices: 3 slices were aborted,
and only one free PC was left after the creation of the
14th slice. The results are shown in Fig. 5.

1 Free PCs &
9 PCs reloading| ..

22 active users
63 active expts.

‘shail01’ Logged in.
Mon May 03 3:36pm MDT

Fig. 13 One PC was left.

V. ATTACKING AUTHENTICATION AND
EXPERIMENTS ON STOLEN CREDENTIALS

The authentication process of ProtoGENI involves
saving users’ credentials on their local Linux machines.
The whole attack design process is divided into three
levels addressed in the following paragraphs. Fig. 6
shows a ProtoGENI experimental flow chart.

1.Create SSL Step1. Steal
Certificate From SSL Certificate |
Emulab Webpage and

and Download it at PassPhrase
local Direcroty
Default
ProtoGENI
2. Download Test Configuration

Scripts and Install File
Python,M2Crypto

ep3. Ins
ProtoGENI
testbed on the
hacker
machine

3. Register Slices

4

Step4. Run
Discovery.py

4. Write a
Rspec. XML File to
Create a Sliver

Step5. Register Slice
with the User's
credentials

5. Create SSH pair keys
and upload pub key to

Step 6.

Emulab Webpage and

Login the Nodes, do the Second Level
Attack

Experiments

Fig. 14 ProtoGENI
Experimental Flow
Chart

Fig. 15 First Level
Attack Design Diagram

A. Trojan Horses and How This Works

Many Linux users believe that they are immune to
malware and Trojan threats. However, Netinfinity [1]
showed that, if a hacker can combine a victim’s shell
with a port, the hacker can connect and execute arbitrary
commands on the victim's computer without the owner’s
knowledge. Thus, there is a remote shell available to the
attacker. As most users are invariably logged in as a root
user, it is highly probable that this would become a
remote root shell.

Once the shell binds to the port, the attacker could
have the victim's IP address sent to a remote FTP server
or even an IRC. The attacker has thus converted the
victim machine into a Zombie (orbot).

We created a Malware described as follows:

1. Trojan: (1) Make a directory .gnome-system; (2)
Startup the Gnome-system script so that the
victim's malware starts;

2. shellbind: A netcat command that binds a port of
the victim's shell to the port 5555;

3. ftp2ftp: Sends the victim's IP address and
username to the Hacker's ftp.
The Trojan Horses source codes and further

explanations will be provided in the later subsections.

B. First Level Attack

First, Step 1 for ProtoGENI is to acquire an SSL
certificate as shown in Fig. 14. The users use the Emulab
webpage to generate a certificate from their Emulab
passwords and a Pass Phrase, and they can then
download their certificates to the local machine before
using ProtoGENI. The potential vulnerability could be
that attackers can steal the certificates of the
authentication if they can inject malicious code, such as
a Trojan horse to the users’ local machines. This
operation potentially compromise the ProtoGENI nodes ;
because hackers could copy the saved SSL and
passwords files from the users’ machines to their own,
and then get the right to setup and interact with the
ProtoGENI. After the hackers have access to the
ProtoGENI, they will be able to act as the real users and
register the slices from the ProtoGENI. We will show
you how this works later in the paper.

Fig. 15 shows the first level attack design diagram. In
the first level attack, we used the Trojan horse to open a
back door to be used to steal the SSL certificate, as
shown in Fig. 16. After we bounded one of the victim’s
shells (the victim is another experimental account) to the
port 5555, we used the remote shell to connect to the
victim’s computer and steal the SSL and Pass Phrase
from the machine, as shown in Fig. 17. As shown in Fig.
18 and Fig. 19, the hacker successfully used the user’s
SSL certificate and configuration file to obtain the
ProtoGENI resources and to register a “hackerslicer”
slice.

fhome/hacker/.ssl

encrypted.pem

- encrypted.pem (~/.ssl)|
:file Edit View Search Jools Documents Hell
; uiOpen ~ _Save

encrypted.pem ¥ password
----- BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
||DEK-Info: DES-EDE3-CBC,DD57CB2C3289965C

|| ks0oa81tCY0Qfn2CT fWc1SbkeZobaVYZIXAhxuVgSHm(
||dzke/nfEKUFPXSTICH+VAZENYASSHW2MNW2 31 0P+ ZOAM
|| ap+mwGIkBae0257x96x072723A1+x3Cu0/0eplyY16]s

|| g3y rAH4u+VBx+Hteuemd j /pzSFE9+6WoSLZLUCYLiLdl

Mhame/hacker).ss!

’ =

encrypted.pem

password (~/.551) - gedit

Hle Edit Yiew 3Search Jools Documents Heip

Open v Sswe el

encrypted.pem X

classexpt

password B

Fig. 16 Setup the Stolen SSL
the Stolen Passphrase

<link component manager uuid="urn:publicid:IDN+emulab.i
t name="1link-pcl8:ath@-airswitch:air" component wuid="1
t+link+link-pc18%3Aathe-airswitchs3Aair >
<interface_ref component_node uuid="urn:publicid:IDN-
ponent_interface id="urn:publicid:IDN+emulab.net+inter
<interface ref component node uuid="urn:publicid:IDN
" component interface id="urn:publicid:IDN+emulab.net+
<bandwidth>548086</bandwidth>
<latency>8</latency>
<packet_loss>8</packet_loss>
<link type type name="80211g" />

Fig. 17 Setup

<link_type type name="86211b" /=
<link_type type name="80211a" />
</link>
</rspec>
hacker@kofawp-desktop:~/ProtoGENIS |
@ -| B [hacker@kofawp-desk...

Fig. 18 Hacker Successfully Ran Discovery

spec>

[hacker - File Browser]

hacker@kofawp-desktop:~/ProtoGENIS python registerslice.py -n hackerslice
Got my SA credentia
Mo such slice regis
New slice created
hackergkofawp- deskt

ere:Creating new slice called hackerslice
publicid: IDN+emulab. netssliceshackerslice
/PrOtoGENIS [

Fig.19 Hacker Successfully Create a Slice

After being hacked, we checked whether the user
could still register the slice. Fig. 20 shows that the user
can still register the slice because the user picked up a
slice name that was different from the hacker. In future
experiments, we need to test with both the hacker and
the user using default slice names and then check the
DoS attack. Ultimately, the hacker did compromise the
user’s machine.

[hacker - File Browss

Fig. 20 User still can create a slice after been hacked

C. Second Level Attack Design
In the second level, Step 4 in Fig. 14 shows that the

users can create slivers under slices by creating their
own resource specification XML Files (RSpec.XML).
This means that hackers could also steal the resource
specification XML files from the users. This would give
the hackers the ability to pretend to be the users and
create their experiments without the acknowledgement

of the actual users.

Step 6. Steal
NO

Step8. Steal
the SSH

NO Step9. Hacker
Login Nodes

Rspec. XML

Step 7. Create
Fake Sliver

SRR compromise the Rea
- User on Nodes?
YES
! YES
Step8. Third :
Level Attack Step10. Done

Fig. 21 Second Level Fig. 22 Third Level

| Attack Design Diagram | Attack Design Diagram |

Fig. 21 shows the second level attack design diagram.
After stealing a resource specification XML file, shown
in Fig. 23, the hacker successfully created a sliver using
user’s specification, as shown in Fig. 24. But, the user
also created a sliver in Fig. 25 because the two slivers
were created under two different slice names. The hacker
compromised the user’s machine in the second level
attack. We now study go to the third level attack.

¥ W Q

cation: |fhome/hacker/ProtoGENI

®

-] myrspec.xml
tem
k

Drive]
., A discoverpy

e i
anynode. rspdiinduser.py bound-ty
"

‘e

e]
Futest.rspec getcred
ants

hacker-key.pub jaillink.rspec jailtes

Fig. 23 The Hacker Stole the User’s Resource
Specification XML

Fig. 25 The User Created a Sliver after Being Hacked

D. Third Level Attack Design
In the third level, Step 5 in Fig. 14 shows that, after

the users acquire the nodes and links from the
ProtoGENI, they need to create SSH pair keys and to
upload the public key to their Emulab webpage.
Unfortunately, they also have to store the paired key on
their own local machine. This means that the same
Trojan hacker’s attack strategy could be used to steal the
SSH paired keys from the user machine and to let the
hacker login the nodes created by the real user; and then
the real user could not log into their own nodes. This
behavior is characterized as compromising the user’s
local machine to create a DoS attack.

Fig. 22 shows the third level attack design diagram.
After stealing the SSH keys from the user, shown in Fig.
26, the hacker tried all the paired keys that the user used.
But this hacking process was not successful, as shown in
Fig. 27 and Fig. 28. The reason could be either 1) the
unreliability of the ProtoGENI testbed because even the
normal users often have problems logging into their
designated nodes or 2) SSH key infrastructure is not
secure enough. The answer to this question is yet to be
determined. We need further experiments to investigate
it.

| ome/hackery.ssh

=

protogeni-key protogeni-key.pub id_rsa id_rsa.pub

Fig. 26 Stolen SSH Key

Fig. 27 User Login the Nodes

Fig. 28 Hack Could not Login the Nodes

VI. PORT SCAN ATTACK FROM INSIDE/OUTSIDE
NODES

Port scanning is a common method used by attackers
to find out which ports are open and can be attacked.
This experiment scans the ProtoGENI nodes both from
outside ProtoGENI (i.e., from one of our non-ProtoGENI
desktops) and from within the nodes to check for open
ports.

The experiment was conducted on two ProtoGENI
nodes. We used NMap, a port scanner, to analyze the
ports that were open and vulnerable to attacks. Steps to
initiate the experiment included the following:

1. Download python and M2Crypto.

2. Assuming that we already have an Emulab account,
login to Emulab with your id and password and
generate a certificate. Download the certificate and
save it in SHOME/.ssl/encrypted.pem.

3. Generate the ssh key using the command ssh-keygen
-f protogeni-key

4. The key that is generated is saved as protogeni-
key.pub and protogeni-key.

5. Upload the public key into protogeni.

6. Download the test script from the link below:
http://www.emulab.net/downloads/protogeni-
tests.tar.gz.

7. Unpack the tarball somewhere.

8. Make sure everything is working fine and run the
python program discover.py.

9. Create aslice using the command registerslice.py

10. Once the slice is created, create a sliver which
specifieswhich resources we need. We used two
nodes in our experiment: Genil and Geni2.

11. Create the slice using createsliver.py and
myrpsec.xml. myrspec.xml contains all the resources
that we want to request.

Once the sliver is obtained and we have the two nodes
that we requested, we are going to conduct two different
experiments.

A. Scanning Nodes from Outside

In this part of the experiment, we scan nodes Genil
and Geni2 from our desktop using a port scanner, as
shown in Fig. 21.

‘I| [
IEI_ et (g >‘“”
m} Gei
(] \(i
FINNY ~
- E ;::iuzlmdd ?za
&8,

Fig. 29 Desktop scanning
the two nodes

Fig. 30 Genil scanning
itself and the other node
Geni2.
Steps to initiate the experiment included the following:
1. Download a port scanner which is available online.
(We used NMap scanner.)
2. Scan the nodes from outside protogeni (i.e., from a
desktop).
3. Use the addresses of the two nodes to scan them
individually.
Figs. 31-32 show the screenshots of the two nodes
being scanned. We observe that port 22 is open. Thus

Target: |pcT2emulabret ~ | Profe: [Intense scan | |5can

San Tecls Profie Help

Command: [rmap T4 -A v -7 -P522,7%.80

21,80,338% pc 72, emulab.net

|| Mosts | Sercices | (M [Hosts Topology Host Details Scans

o5 Hest
W petlemisboe |
W pc72emulshne

esulab.net (133.99.36.72)

port
VERSTON
Open3sn 3.5p1 (pretocol

F]_g. 31 Genil was scanned by NMap

an Toohs profile pelp

net (133,90.34.62)

RSION
SpenssH 3.5p1 (pretocol

Fig. 32 Geni2 was scanned by Nmap

B. Scanning Nodes from inside ProtoGENI
In this part of the experiment, we login to a node and

let the node scan itself and other ProtoGENI nodes.

Steps to initiate the experiment included the following:

1. Login to each node and scan it and the other node.

2. First, using Genil, scan it using the command:
Nmap -sS localhost

3. Scan Geni 2 using the command: Nmap -sS address
of geni2

4. Repeat the same with Geni 2 by scanning it and Geni
1.

The results are shown in Fig. 33-36, which show that
port 22, which is the ssh port, is open. The scan results

Fig. 35 Geni2 self scan

an:l-‘:aaml:-$ ssh -C sneha@pet?.emulab.net
[snehaigeniz ~1% sudo sbinsbash
[root@geni? sneha)# nmap -35 peT?. emulab.net

Starting nmap V. 3.00 | www.insecure.org/nmag/ |
Interesting ports an pc72.emulab.net (155.98.36.72):
(The 1599 ports scanned but not shown below are in state: closed)

Part State Service
22/tcp open ssh
111/tcp open sunrpe

Nmap run completed 1 IP address (1 host up) scanned in 5 seconds
[root@geni? snehal#

Fig. 36 Geni2 scanning Genil
TABLE 1 SCAN RESULTS

Node which is | Node being Open | Service
scanning scanned ports
Desktop Geni 1 22/tcp ssh

are shown in Table 1.

File Edit View Terminal Help
[rootigenil snehal# nmap -A localhost
nmap: unrecognized option -A°
Nmap V. 3.80 Usage: nmap [Scan Type{s)] [Options] <hast or net list>
Some Common Scan Types (*=* options require root privileges)
* -35 TCP SYN stealth port scan (default if privileged (root))
-sT TCP connect() port scan (default for unprivileged users)
* -sU UDP port scan
-8P ping scan (Find any reachable machines)
® -gF,-sX,-sN Stealth FIN, Xmas. or Null scan (experts only)
sR/-1 RPC/Identd scan {use with other scan types)
Some Common Options (none are required, mast can be combined):
* -0 Use TCR/IP fingerprinting to guess remote operating system
p <range» parts te scan. Example range: '1-1024,1080,6666,31337°
-F oOnly scans parts listed in nmap-services
w Werbose. Its use is recommended. Use twice for greater effect.
=P8 Don't ping hosts (needed to scan wew.microsoft.com and others)
* -bdecoy_hostl,decoy2[,...] Hide scan using many decoys
T <Paranoid|Sneaky|Polite|Normal|Aggressive|Insane> General timing policy
-n/-R Never do DNS resolution/Always resolve [default: sometimes resolve]
-oNf-oX/-06 <logfile> Dutput normal/XML/grepable scan logs to <logfile=
il =inputfile» Get targets from file; Use "' for stdin
* -5 <your IP>/-e <devicenames Specify source address or netwark interface
interactive Go into interactive mode (then press h for help)
Example: nmap -v -35 -0 wew.my.com 192.168.0.0/16 "192.88-90.°.%"
SEE THE MAN PAGE FOR MANY MORE OPTIONS, DESCRIPTIONS, AND EXAMPLES
[rootégenil snehal# nmap -s5 localhost

Starting nmap V. 3.88 (www.insecure.org/nmaps |

Interesting ports on localhost (127.9.9.1):

(The 1597 parts scanned but nat shown below are in state: closed)
Port State service

2/tep open ssh

25/tep open satp

111/tcp open sunrpe

32770/ tcp open sonetines-rpcd

Nmap run completed 1 IF address (1 host up) scanned in 3 seconds
[root@genil sneha]# exit

[snehaigenil ~1% logout

Connection to pcT2.emulab.net closed.

anilganil:-3 [

Fig. 33 ﬁ(_S_er)il self scan

file Edit View Jerminal Help

antlganil:~% ssh -C snehagpc?2.enulab.net
[snehaggenil =% sudo /bin/bash

[rootégenil snehald nmap -sS pé2.emulab.net

Starting nmap V. 3.88 (www.insecure.org/naap/)
Interesting ports on pcf2.emulab.net {155.98.36.62):
(The 1599 ports scanned but not shown below are in state: closed)

Port State Service
22/t apen ssh
11/tep open sunrp

Wmap run completed -- 1 IP address (1 host up) scanned in 5 seconds
|rootagenil sneha)s
[root@genil snchale

Tl
File Edit View Terminal Help
[roat@genil snehald
[root@genil sneha]#
[rootegenil snchal#
[rootigenil snehale
[roat@genil snchale
[rootigenil snehale exit
[snehadgenil -5 lagout
Connection to pe72.esulab.net closed,
anil@anil:~$ ssh -C snehafpch?, enulab.net

RSA key fingerprint is 6d:1d:76:53:35:25:99:39:22:89:¢a:b6:99:¢3:43:b9.
Are you sure you want to continue connecting (yes/noj? yes

hosts,
[snehaggeni? <5 sudo /bin/bash
[ractipgeniz snehals rmap -35 localhast

Starting nmap V. 3.80 { wew.insecure.org/nmap; |
Interesting ports on localhost (127.9,6.1):

(The 1597 ports scanned but not shown below are in state: closed)
Port state service

23/tep apen ssh

25/tep open tp

111/tcp open sunrpe
32770/tcp open sometimes-rpcd

Nmap run completed -~ 1 IP address (1 host up) scanmedfin 2 seconds
[root@geni2 snehal# exit

[sneha@geniz ~]§ lagout

Connection to peel.esulab.net closed

Desktop Geni 2 22/tcp ssh

Geni 1 Geni 1 22/tcp Ssh
25/tcp Smtp
111/tcp | Sunrpc

Geni 1 Geni 2 22/tcp Ssh
111/tcp | sunrpc

Geni 2 Geni 1 22/tcp Ssh
111/tcp | sunrpc

Geni 2 Geni 2 22/tcp Ssh
25/tcp Smtp
111/tcp | Sunrpc

The authenticity of host 'poBl.emulab.net (155.98.38.62)" can't be established.

Warning: Permanently added °pc62.emulab.pet,155.98.36.62° (RSA) to the list of known

VIl. SUMMARY AND SUGGESTIONS

First, we performed an analysis of the rum-time
communication steps which provide an overview of
where the security parameters are used and located, so
when intrusion happens, where could be the
vulnerabilities. We show that accessing Vnodes opens
more ports, adding vulnerability to port scan and
exploration. Also, the security parameters such as SSL
certificates and SSH keys that are stored in the local
machine could be stolen, subjecting to the local machine
compromise. If this happens, more attacks could happen.

Second, we introduced a few self-developed Python
tools, including register multiple slices, creating slivers
and generating various topologies for Rspec. With the
help of these automated experimental tools, attackers can
be quicker, and efficient to use the residual ProtoGENI
resources and remain disguising himself. In addition, we
also found that attacker can only use the latest ticket for
one sliver. The automated tool to generate multiple
tickets within a slice doesn’t help the attacker in DoS.

Third, flash interface uses local browser’s location
storing SSL certificate, adding risks of opening
experiments to local misuses and intrusion. Suggestions:
The flash interface could provide a further check of the

users' identity before he can create a slice using the
interface.

Fourth, we performed experiments using shared
nodes (Vnodes). One issue is that the current
implementation of using shared nodes has a particular
problem, i.e. when the Vnodes have the same name in
different slices, we can send traffic across slices.
Suggestions: This may be caused by the implementation
of VVnodes in the mapping of the names.

Fifth, the experiments using shared nodes (Vnodes)
show that using VVnodes generates large delay variance in
RTTs when using repeated pinging. Suggestions:
Though this is not a security problem, the current
virtualization technology could be related.

Sixth, we performed stress tests that relate to the
network isolation and quality, particularly, whether the
recourse usage is confined to its specification, to see if
other sliver creations could be affected. The results are
positive.

Seven, we tested the vulnerability of requesting
many slices and slivers of the Emulab site of ProtoGENI
by writing C++ programs which repeatedly asked for
resources and deleted them. Surely, the experiments

show the usage of the resources, such as PCs, till exhaust.

Eight, we performed the experiments to attack the
authentication and then the following-up attacks. We

started by planting a Trojan Horse Malware. We
succeeded in stealing the SSL credentials from the user’s
setup machine for ProtoGENI. With the stolen credential,
the attacker is able to act as the real users and register the
slices and further create slivers under slices by creating
their own resource specification. Then the same Trojan
can steal the SSH paired keys. However, the attacker can
not login the experimental nodes created by the real user.
This is positive. At this point, we’d still say that there is
still a large space for the hacker to use other high-level
attacking techniques to do more damage to the user’s
local machine, the ProtoGENI nodes, and even the whole
ProtoGENI testbed.

Ninth, we conducted experiments to scan nodes from
inside and outside of the ProtoGENI nodes. We
concluded that port 22, which is the SSH port, is open
and thus vulnerable to attacks.

REFERENCES

[1] Project Technical Documents, “Revised description of planned security
experiments,” http://groups.geni.net/geni/wiki/ExptsSecurityAnalysis.

[2] Project Technical Documents, “Report on initial experiments and
findings”, http://groups.geni.net/geni/wiki/ExptsSecurity Analysis.

[3] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack, K.
Webb, and J. Lepreau. “Large-scale Virtualization in the Emulab
Network Testbed.” In Proc. USENIX Annual Technical Conference,
Boston, MA, June 2008.

