
ExptsSec: S2.c. Report on Experimentation Exploiting Vulnerabilities and
Validating Vulnerability Hypotheses

Xiaoyan Hong, Fei Hu, Yang Xiao

Jingcheng Gao, Dawei Li, Sneha Rao, Fnu Shalini, Dong Zhang
University of Alabama

July 09, 2010

I. INTRODUCTION
This document reports many experiments conducted

following the security issues and experiments design
document (see the project Milestone#2 deliverables [1]).
The experiments show unique ways in approaching the
issues listed in [2]. The experiments are not overlapped
mostly. A couple experiments are the validations and
extensions of the experiments reported in Milestone#2
deliverables [2].

Suggestions are given to improve the development of
ProtoGENI in its security from an experimenter’s view
point. Noticeably, some issues that we study here pertain
to the current developing version. With the rapid pace of
ProtoGENI development, the security issues mentioned
in this document could be solved.

The rest of the document is organized as follows.
Section II presents our work investigating the interactions
at runtime with ProtoGENI control framework. Section
III gives experiments exploiting ProtoGENI resource
allocation. In Section IV, more details on DoS attack to
Emulab resources at run-time is described. Section V
focuses on attacking authentication and experiments on
stolen credentials. Section VI includes more details on
port scan attack from inside/outside ProtoGENI nodes. At
last in Section VII, we summarize the experiment results
and suggestions.

II. EXPERIMENTER’S INTERACTION WITH THE
CONTROL FRAMEWORK

A. Run- time security parameters
The experiment can be created with the steps shown in

Figure 1. It usually involves using provided test scripts.
All ProtoGENI authorities (CH, AM and SA) present an
XMLRPC interface [4] over HTTP and SSL. And all the
user requests are made via a URL register within the
clearinghouse for each of the services. A registered user
can interact with these XMLRPC servers using the
python code provided by the official ProtoGENI wiki
site.

ProtoGENI allows only SSH login to the nodes the
user acquires through the steps. Users have to upload
their SSH public keys to the slice authority. When trying
to login to a Vnode, user has to SSH to a correct port
different from the default port number 22 (the port
number can be found in manifest). These ports could
open vulnerability to port scan and exploration.

Figure 1 shows the steps and communications for a
ProtoGENI experiment. In the Figure, the security
related parameters are illustrated. This figure provides
an overview for where threats could be introduced. In
addition, the storage location of the SSL Certificate and
SSH Keys makes it easier for being stolen or tampered
with. If stolen, attackers can access to the experimental
nodes being used by legal users. From these nodes,
more security attacks could be performed.

Figure 1. Steps for Experiment with Securiry Parameters

B. Automated exploiraiton with tools
We have developed several automated tools for our

experiments. The tools are developed in order to mimic a
real attacker, who would be greedy and efficient in

grabbing ProtoGENI network information and resources
to make the attacking powerful.

Assume the attacker can intrude a ProtoGENI user, or
active slices or himself is a malfunctioning user. The
purpose is to perform DoS attack by requesting as many
resources as possible. In addition, the attacker is
cautious about its action, he may choose to disguise his
action with some randomness.

We describe the steps of our experiments with the
tools to perform possible DoS attack and security issues
below:

1) Use automated experiment tools to register many
slices and create cooresponding slivers.

The tool AuSlice.py can help user register multiple
slices at the same time. Another tool AuSliver.py can be
used to create slivers simultaneously on previously
registered slices. ProtoGENI Control Framework (CM)
works well for multiple experiment creation until the last
slice that the resources acquired for the extra slivers
(more than one) can not be met. Usually, the user cannot
be logged into the sliver with SSH.

2) Use RSpec henerating tool to create various
topology

genRspec.py can generate RSpec of certain topology
types quickly with the number of nodes as an input.
There are 4 types of topology can be created: line
topology, ring topology, arbitrary topology and random
topology. Nodes type can also be chosen as Vnodes or
normal nodes. User can also choose to install Iperf in the
nodes on demand.

3) Security issue:
One issue is that when multiple slivers are created,

the SSH public key may not be passed to the all
resources properly at the same time.

Another issue is to disguise attacking behavior. The
attacker can use the tool to generate different Rspec of
different topologies at different slices to be combined
with the above step. These different topologies help
him with more disguises than a fixed topology used by
many different slices. He could always use the same
Rspec with a large topology, but that raises his chance of
being discovered.

The third issue is to maximize its attacking gain.
Due to the dynamic usage of the GENI resources, the
attacker intends to use as much residual recourse as
possible. So he may try different topology sizes to
approach the current available resource. A simple
adaptation algorithm can serve this purpose, e.g., binary
search algorithm.

In addition, our early experiments have shown that
ProtoGENI CM does not allow multiple gettickets from
one slice. It always takes the latest Rspec for the current
slice. This is to say that automated tool to generate
multiple tickets with in a slice doesn’t help the attacker.

C. Flash Interface
ProtoGENI now allows user to create slices and

slivers with a flash interface. An authenticated user can
download his/her SSL certificate from user profile page
on the Utah Emulab and save the certificate into the web
browser. Then the user can create experiment using the
browser.

Security Issues: The flash interface really provides a
convenient way for researchers to do experiment with
ProtoGENI facilities. However, once the SSL certificate
is imported into the web browser, any user can do
experiment using this particular browser in the case that
the owner of the web browser (authenticated user) leaves
the operating system unlocked as there is no further
identity check before a user can get a full control as an
authenticated ProtoGENI user.

Possible Suggestions: The flash interface should
provide a further check of the users' identity before he
can create a slice using the interface immediately.

III. EXPERIMENTS WTH RESOURCE ALLOCATION
Here we describe experiments that exploits the

virtualization mechanism inside the ProtoGENI where
resource allocation is concerned. In experimentation, the
security issues are related to the ProtoGENI architectural
building blocks in the virtualization.

A. Isolation of Slices
A slice provides the networked resources for an

experiment. Physically, one slice shares hardware with
other slices through virtualization. From control
framework point of view, slices are totally separated,
isolated from each other. Each one is contained. Control
framework should not allow nodes belonging to different
slices communicate with each other even though they are
created by the same user. Our experiment tries to test the
isolation function of the control framework.

Experiment Setup: In this experiment, three slices
with slice names test1, test2 and test3 are created with
the same topology of two Vnodes and a link of
bandwidth 100Mb/s as follows:

 shared1 ---- shared2
Tool Iperf is installed on both shared1 and shared 2.

All the resources acquired are summarized in TABEL I.

Experiment Steps:

First, only one Iperf server is running in slice test1 at
the node named shared1 with the command:

iperf –s

TABLE I. RESOURES OF THE SLICES

Node
Name

Slice
Name

Hostname Port
Number

shared1 test1 pc175.emulab.net 32058
shared2 test1 pc172.emulab.net 32058
shared1 test2 pc172.emulab.net 32570
shared2 test2 pc175.emulab.net 32570
shared1 test3 pc263.emulab.net 33850
shared2 test3 pc102.emulab.net 33850

Second, at nodes shared2 of both slices test1 and

test2, we try to connect to the server shared1 with the
following command:

iperf –c shared1

Then we observed from the screen of the Iperf server
(shared1 at test1) that both of the clients connected to
the server eventhough they are not at the same slice, i.e.
the nodes can communicate across slices! In Figure 2,
we illustrate our experiment with the screen captures of
the four nodes. The left sides are the Iperf server and
client in test1 and the right side are those in test2. Figure
2 shows that the server shared1 in test1 (slice1892) (the
upper left terminal) is connected by clients of ports in the
sequence (numbers in the red circle):

43589, 53256, 53257, 43590
The first client (shared2 in tests1 (slice1892) the left

lower terminal) connected to server with sequence
(numbers in the blue circle):

… 43589, 43590 …
The second client (shared2 in test2 (slice1893) the

right lower terminal) connected to server with ports of
the sequence (numbers in green circle):

… 53256, 53257…

Figure 2. Cross-slice Communication for Test1 and Test2

However, it seems that the problem could due to the
fact that the two slices share the same physical resources
(pc175 and pc172). So we performed the same
experiment with test1 and test3. We obtained the same
result as shown in Figure 3.

Further, we tried other possibilities including
changing Vnode to a normal node, connecting to the Iperf
server with IP address and using different node names for
different slices (no matter whether it is a Vnode or a
normal node). The results are summarized in TABLE II.
It shows that there is only one setting that the cross-slice
communication can occur.

Experiment Analysis:
The result of this experiment shows that the cross-

slice communication can really happen under ProtoGENI
control framework when the nodes are Vnodes with the
same node name and Iperf to a server through the node
name. This may be caused by the control framework
implementation of Vnodes and the mapping of the
names.

Suggestions: The developers of ProtoGENI control
framework may need a fix at its design and
implementation for Vnode according to its different
mechanism.

B. Nonexclusive use of resources
ProtoGENI user can specify a bandwidth of the link

between two nodes. However the link between two
Vnodes (sharing the same physical node) is in fact using
a loopback (bridged) method as mentioned in [3]. So the
link between two Vnodes or link between a Vnode and a
normal node may reveal different performance
characters.

Figure 3. Cross-slice Communication for Test1 and Test3

TABLE II. CROSS-SLICE EXPERIMENTS RESULT

Vnodes or
Normal

Iperf to the
server with

Same node
name or

Result

nodes node name or
IP address

different
node name

Vnodes Node name Same name √
Vnodes IP address Same name ൈ
Vnodes Node name Different

name
ൈ

Normal
nodes

Node name Same name ൈ

Normal
nodes

IP address Same name ൈ

Normal
nodes

Node name Different
name

ൈ

Experiment Setup: This experiment has two Vnodes

and one normal node with following topology:
 shared1 ---- shared2 ---- geni0

The node shared1 (hostname: pc102.emulab.net &

port number 31290) and shared2 (hostname:
pc263.emulab.net & port number 31290) are Vnodes and
geni0 (hostname: pc204.emulab.net & port number 22 as
default SSH port number) is a normal node. The link
bandwidth between the Vnodes and between shared 2
and geni0 are both 100Mb/s.

Experiment Steps:
First, we try to ping from shared1 to shared2 and

from shared2 to shared1. We have the following result as
shown in Figure 4 and Figure 5. The two results show
that the delay variances are obvious.

Figure 4. Ping From shared1 to shared2

Figure 5. Ping From shared2 to shared1

Then we ping from shared2 to geni0 and from geni0
to shared2. The results are given in Figure 6 and Figure
7. Figure 6 shows that the delay variances from a Vnode
to a normal node are mostly small. The initial long delay
exists in the many repeated experiments.

Experiment Analysis:
From the results of this experiment we see that when

pinging from a normal node to a Vnode or ping between
Vnodes, the round-trip time is not stable. This may
indicate that the network is not reliable enough for a real
network experiment.

Suggestions: the large delay variance at the Vnodes
may be because of the current virtualization technology
OpenVZ that ProtoGENI is using. Developers may
consider further potential defects when applying to a
large scale system.

Figure 6. Ping From shared2 to geni0

Figure 7. Ping From geni0 to shared2

C. Network Stability and Stress Test
This consideration relate to network quality.

Unwanted network quality will be a potential problem
that affects experiment results which may as severe as
security problems. We perform stress tests to see if the
recourse usage is confined to its specification, to see if
other sliver creations could be affected. The software
Iperf (version 2.08) is equipped with some parameters to
test network stability and for stress test.

Experiment Setup: In the experiment, we create a
sliver with a topology:

geni1 ---- geni2 ---- geni3
Iperf is installed at geni1 and geni3.

Experiment Steps:

First, we ran the command iperf –s in geni1 to start
the server.

Then we ran the command iperf -c geni1 -t 120 -i 10
in geni3 to connect to the server geni1. Here the
transmission time is set to 120s and interval to 10s. The
default window size is 16KB for TCP. Result is given in
Figure 8. The result shows that the transmission rate is
stable at around 94.0 Mbits/sec.

Further we add the -P * option of Iperf to the above
experiment. -P * is used to simulate * multi-threads to
connect the server. We used window size 128k. The
result shows that the network works well for as many as
possible threads connecting the server together. (The
default maximum upper bound is 253 threads, and when
the * is raised to 254, it will return a thread creation
failure).

Experiment Analysis:
In the Iperf client, the Linux terminal will show the

transmission rate of each thread and the total rate of all
the threads. As the number of threads increases, the
transmission rate of each thread decreases, but the total
rate keeps stable for a rate of around 94.0 Mbits/sec.

From the these results, we can see that the network
under ProtoGENI control framework performs correctly
in separating the network traffic flows when we use Iperf
to test it. So the network quality here will not be an
obstacle for researchers to carry out their experiments.

Figure 8. ProtoGENI Network Stability Test

IV. DOS ATTACK TO TEST PROTOGENI RUN-TIME
VULNERABILITY

We repeatedly requested ProtoGENI resources by
running C++ programs, which automatically generated
specification of the sliver XML files and created slices
and slivers. One program is responsible for creating
slices and slivers; the other is responsible for deleting the
slices and slivers after testing the results in order to give
no real trouble to the Emulab site. Fig. 9 shows the
creating slices and slivers program running at the 4th
slice and sliver

Fig.9 The Creating Slices and Slivers Program Running

at the 4th slice and sliver

Fig. 10 The Remaining PCs are 127 at the time of our

running the 4th slice and sliver

Fig. 11 The Remaining PCs are 119 at the time of our

running the 10th slice and sliver

Fig. 12 The Remaining PCs are 135 at the time of

deleting all slices and slivers
Our tests show that our programs can easily create

slices and livers. In Fig. 10 and Fig. 11, the number of
available PCs decreased from 127 (4th slice) to 119 (10th
slice) due to the requesting resource procedure. However,
from Fig. 11 to Fig. 12, the number of available PCs
increased from 119 to 135 due to finishing deleting. We
chose the program argument 10, which means that we

only requested 10 slices. However, it is dangerous to the
ProtoGENI if we run the program with an argument of
100, 1000, etc. Also, the ProtoGENI tutorial wiki says
that the slice is a set of slivers. But our tests showed that
one slice can only contain one sliver.

In this way, we tested the vulnerabilities of the
Emulab site of ProtoGENI to Denial of Service (DoS)
issues.

We conducted another experiment for threats to the
availability of resources as follows:
• We created of as many slices as possible to

exhaust resources
• We created slices and allocated resources to

slivers
• Initial Emulab statuses : 33 free PCs; 16 slices

were created as a series of similar names like
shailslice1, shailslice2…. shailslice16, each with a
request of 2 PCs , then we watched for 17th slice

We could not create all 16 slices: 3 slices were aborted,
and only one free PC was left after the creation of the
14th slice. The results are shown in Fig. 5.

Fig. 13 One PC was left.

V. ATTACKING AUTHENTICATION AND
EXPERIMENTS ON STOLEN CREDENTIALS

The authentication process of ProtoGENI involves
saving users’ credentials on their local Linux machines.
The whole attack design process is divided into three
levels addressed in the following paragraphs. Fig. 6
shows a ProtoGENI experimental flow chart.

Fig. 14 ProtoGENI
Experimental Flow

Chart

Fig. 15 First Level
Attack Design Diagram

A. Trojan Horses and How This Works
Many Linux users believe that they are immune to

malware and Trojan threats. However, Netinfinity [1]
showed that, if a hacker can combine a victim’s shell
with a port, the hacker can connect and execute arbitrary
commands on the victim's computer without the owner’s
knowledge. Thus, there is a remote shell available to the
attacker. As most users are invariably logged in as a root
user, it is highly probable that this would become a
remote root shell.

Once the shell binds to the port, the attacker could
have the victim's IP address sent to a remote FTP server
or even an IRC. The attacker has thus converted the
victim machine into a Zombie (orbot).

We created a Malware described as follows:
1. Trojan: (1) Make a directory .gnome-system; (2)

Startup the Gnome-system script so that the
victim's malware starts;

2. shellbind: A netcat command that binds a port of
the victim's shell to the port 5555;

3

T
exp

B
F

cer
we
pas
dow
usi
tha
aut
a
ope
bec
pas
and
Pro
Pro
reg
you

F
the
bac
sho
she
por
vic
fro
18
SSL
Pro
slic

3. ftp2ftp:
username

The Trojan
planations wil

B. First Le
First, Step 1
rtificate as sho
bpage to ge
sswords and
wnload their
ing ProtoGEN
at attackers
thentication if
Trojan horse
eration potent
cause hacke
sswords files
d then get th
otoGENI. Af
otoGENI, they
gister the slic
u how this wo
Fig. 15 shows
e first level at
ck door to b
own in Fig. 1
ells (the victim
rt 5555, we u
ctim’s compu
m the machin
and Fig. 19,

L certificate
otoGENI reso
ce.

Sends the
e to the Hacke

Horses so
ll be provided

evel Attack
 for ProtoGE
own in Fig. 1

enerate a cer
d a Pass Ph

certificates t
NI. The pote

can steal
f they can inj
e to the us
tially compro
rs could co
from the us

he right to s
fter the hac
y will be able

ces from the
orks later in th
s the first lev
ttack, we used
be used to st
6. After we b

m is another e
used the rem

uter and steal
ne, as shown
, the hacker s

e and config
ources and t

victim's IP
er's ftp.
ource codes
d in the later s

ENI is to ac
4. The users

rtificate from
hrase, and t
to the local m

ential vulnera
the certifi

ject maliciou
sers’ local m
omise the Prot
opy the sav
ers’ machine
setup and int
ckers have
e to act as the
ProtoGENI.

he paper.
vel attack desi
d the Trojan h
teal the SSL
bounded one
experimental

mote shell to
l the SSL an
in Fig. 17. A
successfully

guration file
to register a

address a

s and furth
subsections.

cquire an SS
use the Emul

m their Emul
they can th
machine befo
ability could
icates of t

us code, such
machines. Th
toGENI node
ved SSL a

es to their ow
teract with t
access to t

e real users a
We will sho

ign diagram.
horse to open

L certificate,
of the victim
account) to t
connect to t

nd Pass Phra
As shown in F

used the user
to obtain t
“hackerslice

and

her

SL
lab
lab
hen
ore
be

the
as

his
es ;
and
wn,
the
the
and
ow

In
n a
as

m’s
the
the
ase
ig.
r’s
the
er”

Fig. 1

Afte
could
can sti
slice n
experim
the us
DoS a
user’s

Fig.

C.
In th

users
own r
This m
specifi
the ha
create
of the

Fi

16 Setup the S
th

Fig. 18 Hack

Fig.19 Hack
er being hac
still register
ill register th

name that wa
ments, we ne
er using defa

attack. Ultima
machine.

20 User still

Second Lev
he second lev
can create sl

resource spec
means that h
ication XML
ackers the ab

their experim
actual users.

ig. 21 Second

Stolen SSL
he Stolen Pass

ker Successfu

ker Successfu
cked, we che
the slice. Fig

he slice becau
s different fro
eed to test w

fault slice nam
ately, the hac

can create a s

vel Attack Des
vel, Step 4 in
livers under
cification XM
ackers could
files from th

bility to prete
ments withou

d Level

 Fig
sphrase

lly Ran Disco

ully Create a S
ecked wheth
g. 20 shows th
use the user p
om the hacke

with both the
mes and then
cker did comp

slice after bee

sign
n Fig. 14 sho
slices by cr

ML Files (RS
d also steal th
he users. This
end to be the
ut the acknow

Fig. 22 Third

g. 17 Setup

overy

Slice
er the user
hat the user
picked up a
er. In future
hacker and

n check the
promise the

en hacked

ows that the
reating their
Spec.XML).
he resource
would give

e users and
wledgement

d Level

F
Aft
in F
use
als
we
com
atta

F

D
I

Attack Desig
Fig. 21 shows
fter stealing a
Fig. 23, the h
er’s specifica
o created a s
re created un
mpromised th
ack. We now

Fig. 23 Th

Fig.2

Fig. 25 The U

D. Third L
In the third le

gn Diagram
s the second

a resource spe
hacker succes
tion, as show
sliver in Fig.

nder two differ
he user’s ma
study go to th

he Hacker Sto
Specificat

24 The Hacke

ser Created a

evel Attack D
evel, Step 5

Attack Des
level attack d

ecification XM
ssfully created
wn in Fig. 24

25 because
rent slice nam
achine in th
he third level

ole the User’s
tion XML

r Created a S

a Sliver after B

Design
in Fig. 14 sh

sign Diagram
design diagram
ML file, show
d a sliver usi
4. But, the us
the two slive

mes. The hack
e second lev
 attack.

Resource

liver

Being Hacked

hows that, aft

m.
wn
ng
ser
ers
ker
vel

d

fter

the u
ProtoG
upload
Unfort
their o
Trojan
SSH p
hacker
the rea
behavi
local m

Fig.
After s
26, the
But thi
Fig. 27
unrelia
norma
design
secure
determ
it.

sers acquire
GENI, they n
d the public
tunately, they
own local m

n hacker’s atta
paired keys fr
r login the no
al user could
ior is charac
machine to cre

22 shows th
stealing the S
e hacker tried
is hacking pro
7 and Fig. 2
ability of the
l users often

nated nodes o
enough. The

mined. We ne

Fig

Fig. 2

Fig. 28 Hac

e the nodes
need to create
c key to th
y also have to
machine. This
ack strategy c
from the user
odes created b
d not log into
cterized as c
eate a DoS att
he third level

SSH keys from
d all the paired
ocess was no
8. The reason
ProtoGENI t

n have probl
or 2) SSH k
e answer to t
eed further ex

g. 26 Stolen S

27 User Login

ck Could not

s and links
e SSH pair k
heir Emulab
o store the pa
s means tha
could be used
r machine an
by the real us
o their own
ompromising
tack.
l attack desig
m the user, sh
d keys that th
t successful,
n could be e
testbed becau
lems logging

key infrastruc
this question
xperiments to

SSH Key

n the Nodes

Login the No

from the
keys and to
b webpage.
aired key on
at the same
d to steal the
nd to let the
er; and then
nodes. This

g the user’s

gn diagram.
hown in Fig.
he user used.
as shown in

either 1) the
use even the
g into their
cture is not
is yet to be

o investigate

odes

VI. PORT SCAN ATTACK FROM INSIDE/OUTSIDE
NODES

Port scanning is a common method used by attackers
to find out which ports are open and can be attacked.
This experiment scans the ProtoGENI nodes both from
outside ProtoGENI (i.e., from one of our non-ProtoGENI
desktops) and from within the nodes to check for open
ports.

The experiment was conducted on two ProtoGENI
nodes. We used NMap, a port scanner, to analyze the
ports that were open and vulnerable to attacks. Steps to
initiate the experiment included the following:
1. Download python and M2Crypto.
2. Assuming that we already have an Emulab account,

login to Emulab with your id and password and
generate a certificate. Download the certificate and
save it in $HOME/.ssl/encrypted.pem.

3. Generate the ssh key using the command ssh-keygen
-f protogeni-key

4. The key that is generated is saved as protogeni-
key.pub and protogeni-key.

5. Upload the public key into protogeni.
6. Download the test script from the link below:

http://www.emulab.net/downloads/protogeni-
tests.tar.gz.

7. Unpack the tarball somewhere.
8. Make sure everything is working fine and run the

python program discover.py.
9. Create a slice using the command registerslice.py
10. Once the slice is created, create a sliver which

specifieswhich resources we need. We used two
nodes in our experiment: Geni1 and Geni2.

11. Create the slice using createsliver.py and
myrpsec.xml. myrspec.xml contains all the resources
that we want to request.

Once the sliver is obtained and we have the two nodes
that we requested, we are going to conduct two different
experiments.

A. Scanning Nodes from Outside
In this part of the experiment, we scan nodes Geni1

and Geni2 from our desktop using a port scanner, as
shown in Fig. 21.

Fig. 29 Desktop scanning
the two nodes

Fig. 30 Geni1 scanning
itself and the other node
Geni2.

Steps to initiate the experiment included the following:
1. Download a port scanner which is available online.

(We used NMap scanner.)
2. Scan the nodes from outside protogeni (i.e., from a

desktop).
3. Use the addresses of the two nodes to scan them

individually.
Figs. 31-32 show the screenshots of the two nodes

being scanned. We observe that port 22 is open. Thus
this port is vulnerable to attack.

Fig. 31 Geni1 was scanned by NMap

Fig. 32 Geni2 was scanned by Nmap

B. Scanning Nodes from inside ProtoGENI
In this part of the experiment, we login to a node and

let the node scan itself and other ProtoGENI nodes.
Steps to initiate the experiment included the following:
1. Login to each node and scan it and the other node.
2. First, using Geni1, scan it using the command:

Nmap -sS localhost
3. Scan Geni 2 using the command: Nmap -sS address

of geni2
4. Repeat the same with Geni 2 by scanning it and Geni

1.
The results are shown in Fig. 33-36, which show that

port 22, which is the ssh port, is open. The scan results
are shown in Table 1.

Fig. 33 Geni1 self scan

Fig. 34 Geni1 scanning geni2

Fig. 35 Geni2 self scan

Fig. 36 Geni2 scanning Geni1

TABLE 1 SCAN RESULTS
Node which is

scanning
Node being

scanned
Open
ports

Service

Desktop Geni 1 22/tcp ssh
Desktop Geni 2 22/tcp ssh
Geni 1 Geni 1 22/tcp

25/tcp
111/tcp

Ssh
Smtp

Sunrpc
Geni 1 Geni 2 22/tcp

111/tcp
Ssh

sunrpc
Geni 2 Geni 1 22/tcp

111/tcp
Ssh

sunrpc
Geni 2 Geni 2 22/tcp

25/tcp
111/tcp

Ssh
Smtp

Sunrpc

VII. SUMMARY AND SUGGESTIONS

First, we performed an analysis of the rum-time
communication steps which provide an overview of
where the security parameters are used and located, so
when intrusion happens, where could be the
vulnerabilities. We show that accessing Vnodes opens
more ports, adding vulnerability to port scan and
exploration. Also, the security parameters such as SSL
certificates and SSH keys that are stored in the local
machine could be stolen, subjecting to the local machine
compromise. If this happens, more attacks could happen.

Second, we introduced a few self-developed Python
tools, including register multiple slices, creating slivers
and generating various topologies for Rspec. With the
help of these automated experimental tools, attackers can
be quicker, and efficient to use the residual ProtoGENI
resources and remain disguising himself. In addition, we
also found that attacker can only use the latest ticket for
one sliver. The automated tool to generate multiple
tickets within a slice doesn’t help the attacker in DoS.

Third, flash interface uses local browser’s location
storing SSL certificate, adding risks of opening
experiments to local misuses and intrusion. Suggestions:
The flash interface could provide a further check of the

users' identity before he can create a slice using the
interface.

Fourth, we performed experiments using shared
nodes (Vnodes). One issue is that the current
implementation of using shared nodes has a particular
problem, i.e. when the Vnodes have the same name in
different slices, we can send traffic across slices.
Suggestions: This may be caused by the implementation
of Vnodes in the mapping of the names.

Fifth, the experiments using shared nodes (Vnodes)
show that using Vnodes generates large delay variance in
RTTs when using repeated pinging. Suggestions:
Though this is not a security problem, the current
virtualization technology could be related.

Sixth, we performed stress tests that relate to the
network isolation and quality, particularly, whether the
recourse usage is confined to its specification, to see if
other sliver creations could be affected. The results are
positive.

Seven, we tested the vulnerability of requesting
many slices and slivers of the Emulab site of ProtoGENI
by writing C++ programs which repeatedly asked for
resources and deleted them. Surely, the experiments
show the usage of the resources, such as PCs, till exhaust.

Eight, we performed the experiments to attack the
authentication and then the following-up attacks. We

started by planting a Trojan Horse Malware. We
succeeded in stealing the SSL credentials from the user’s
setup machine for ProtoGENI. With the stolen credential,
the attacker is able to act as the real users and register the
slices and further create slivers under slices by creating
their own resource specification. Then the same Trojan
can steal the SSH paired keys. However, the attacker can
not login the experimental nodes created by the real user.
This is positive. At this point, we’d still say that there is
still a large space for the hacker to use other high-level
attacking techniques to do more damage to the user’s
local machine, the ProtoGENI nodes, and even the whole
ProtoGENI testbed.

Ninth, we conducted experiments to scan nodes from
inside and outside of the ProtoGENI nodes. We
concluded that port 22, which is the SSH port, is open
and thus vulnerable to attacks.

REFERENCES
[1] Project Technical Documents, “Revised description of planned security

experiments,” http://groups.geni.net/geni/wiki/ExptsSecurityAnalysis.
[2] Project Technical Documents, “Report on initial experiments and

findings”, http://groups.geni.net/geni/wiki/ExptsSecurityAnalysis.
[3] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack, K.

Webb, and J. Lepreau. “Large-scale Virtualization in the Emulab
Network Testbed.” In Proc. USENIX Annual Technical Conference,
Boston, MA, June 2008.

