
Lifecycle of a GENI Experiment 15 July 2009

 Page 1 of 14

1 Appendix 1: Experiment Lifecycle Support Tools and Services in GENI Spiral 1

This appendix describes experimenter tools and services expected to be available from each of the
five Spiral 1 clusters at the end of Spiral 1. These tools and services are classified according the
taxonomy described in the body of this document.

The objective of this appendix is to understand the different approaches to experimenter tools and
services, inform the Spiral 1 clusters about tools they may be able to leverage from other clusters, and
identify areas that require additional tools to be developed.

The remainder of this appendix describes tools for experimenter registration, experiment planning,
experiment deployment, experiment execution and experiment sunsetting. The appendix includes a
summary table at the end.

1.1 ORBIT
ORBIT is a testbed for experimentation with wireless networks. It consists of multiple testbeds

(aggregates) of which the indoor ‘grid’ testbed at WINLAB, Rutgers University is the largest. It
contains 400 nodes, each equipped with at least two 802.11 radios while some also have additional
radios, such as bluetooth, Gnu Radios and other experimental radios attached. The current configuration
can be obtained through an “inventory” service of the Aggregate Manager (AM). Nodes also have two
wired Ethernet interfaces, one for experiment data (and under full control by the experimenter), and
another one exclusively reserved for control and measurement traffic. The ORBIT facility at Rutgers
University also hosts a mobile testbed, including mobile wireless nodes with 802.11 radios. For
operational reasons, the mobile testbed requires special arrangements with the testbed operator.

In addition to the nodes, the experimenter on the ORBIT “grid” has access to other devices, such as
RF signal generators and spectrum analyzers. For instance, the signal generator can be used to raise the
noise floor and therefore adjust the RF space and with it the topology of the testbed.

ORBIT provides experimenters with a set of command line tools called OMF (Orbit Control,
Management and Measurement Framework) to describe and execute experiments and to collect results
(Figure 1). OMF also includes tools for testbed operators to manage and operate the testbed.

Figure 1. OMF from the experimenter's point of view.

Lifecycle of a GENI Experiment 15 July 2009

 Page 2 of 14

ORBIT users are not required to use the entire OMF toolkit though it is highly recommended they
do so. The following sections assume the use of the OMF toolkit.

The material for this section comes from the Rutgers ORBIT and OMF web pages
(http://www.orbit-lab.org - ORBIT @ Rutgers specific and http://omf.mytestbed.net - OMF generic).

1.1.1 Experimenter Registration
ORBIT is open to experimenters from research organizations that belong to the ORBIT

Consortium. This consortium is open to any research organization or lab in the world.
To use the ORBIT testbed, the researcher must get an account on the testbed. Accounts are

requested using a web form. The form includes a drop-down list of ORBIT consortium members;
account requestors must select their organization from this list. The account requested is sent to a
designated person at the selected organization who authenticates the requestor and approves the request.

1.1.2 Experiment Planning
Currently, the ORBIT facility at Rutgers University gives experimenters exclusive access to any of

the available testbeds at any given time (time sharing). This avoids RF interference between
experiments from different experimenters. While the nodes in the testbeds are fairly homogenous, the
attached radios change. The “inventory” AM service (currently a REST service) allows for basic
discovery of available configurations.

ORBIT provides multiple “sandboxes” that experimenters can use to develop and test their
experiments before deploying them on the ORBIT testbed. These sandboxes consist of two nodes and a
console and it is strongly recommended that experimenters test their software on a sandbox before
reserving time on the larger ORBIT testbed. There are a limited number of sandboxes; ORBIT supports
a calendar for scheduling time on the sandboxes and the larger testbed. In addition, various research
groups have built their own testbed and using OMF to manage it, reserving the use of the ORBIT “grid”
for experiments requiring large scale.

Experimentation on ORBIT begins with the development of a script that describes the experiment.
The script describes the resources required for the experiment, a description of how they are initialized,
connections between resources, and actions to be performed on or with the resource during the
experiment. The script is written in a language based on the Ruby scripting language. The OMF
experiment scripting language provides common abstractions for configuring network resources and
wrappers for various commonly used tools and applications to generate, receive, and measure network
traffic flows. Experimenters can deploy and integrate their own applications, or extend the OMF
resource controllers to add new functionality.

1.1.3 Experiment Deployment
As mentioned earlier, experimenters reserve (lease) the entire ORBIT testbed or an ORBIT sandbox

to deploy and run experiments. ORBIT provides an on-line calendar. Experimenters with access to
ORBIT can log into this calendar, find a time when the testbed is available, and reserve the testbed for
up to a maximum of two hours. Reservations are considered pending until they are approved by a
scheduling service. It is possible for reservation requests to conflict. ORBIT employs a conflict
resolution algorithm based on a number of factors including how much time the experimenter got on the
testbed over the previous two weeks. An email notification is sent to the experimenter when the
requested timeslot is approved.

During an experimenter’s approved time slot, he can use ssh to log into the console of the testbed or
sandbox for which he has a reservation. The experimenter then uses the OMF load command to install

Lifecycle of a GENI Experiment 15 July 2009

 Page 3 of 14

a disk image on the nodes in the testbed. This can be a standard baseline disk image provided by
ORBIT or an experimenter provided disk image.

1.1.4 Experiment Execution and Instrumentation
After a disk image has been loaded into the testbed node, the experimenter copies the experiment

script into the console machine and runs this script using the OMF “exec” command. This command
starts an Experiment Controller that runs the experiment and controls its execution. This is illustrated
in Figure 3.

The Experiment Controller (EC) communicates with the relevant Aggregate Managers and
Resource Controllers to configure resources, install applications and services, and ultimately orchestrate
the experiment itself. It also receives status and error messages, which are reflected in a dynamic XML
document maintained by the EC. An experiment description can define triggers through XPath
expressions and associated action handlers. A configurable logging mechanism will print relevant
messages to the console, file, or remote logging facility, depending on experimenter’s preferences. The
EC also includes a web server which allows for a web browser based interaction with the experiment.

Most resource configuration options are dynamic, meaning they can be changed during an
experiment. This ranges from changing the sending rate of a traffic generator, to switching the
frequency of a wireless card, or even turning a node on or off.

The EC also allows for temporarily disconnected experiments, where some of the controlled
resources are temporarily not connected to the control network. This is quite typical for many mobile
experiments, but also of great interest for testbeds without a dedicated control network where control
messages are temporarily stopped as not to interfere with the experiment itself.

OMF includes a measurement collection framework called OML (ORBIT Measurement
Framework). For every experiment OML creates a database with tables for each type of measurement
specified for the experiment.

OML consists of a central collection server that collects and stores measurements taken at the nodes
and other resources, such as spectrum analyzers, in the experiment. Various applications, services, and
daemons have been instrumented with OML “measurement points”. A measurement point is essentially
a source for a stream of tuples. The tuple’s size and item types are defined for each measurement point.
Various language bindings exist to register and later use measurement points from inside a program.
While the measurement points are defined by the developer of an application or service, the
experimenter defines at run time which of the measurements available are of interest and what
additional local pre-processing should be performed before the resulting “measurement stream” is sent
towards the OML Collection service. These configurations, described in an XML file, and the resulting
processing steps take place inside the OML Client Library, which is normally linked to the respective
application or service.

A resource resident OML Proxy Server can be used to intercept and temporarily store
measurements to support the above described temporarily disconnected experiments.

The OML collection service stores all the measurement streams it receives in a database. The
streams include meta data describing their respective schema from which the collection service will
automatically create database tables in which to store the stream elements. Collected measurements can
be accessed and analyzed during and at the end of the experiment through SQL queries on the
experiment’s database. The AM provides services to execute the query on behalf of an authorized user
and returns the result in various formats for further processing. The EC contains experimental support
to define measurement queries and visualize the results through the embedded web server.

Lifecycle of a GENI Experiment 15 July 2009

 Page 4 of 14

The AM also provides a service that allows the experimenter to download the entire database for
local processing with tools, such as Matlab and Excel or by user developed scripts.

1.1.5 Experiment Sunsetting
ORBIT does not have any formal archive for experiments where others can find them to replicate or

extend.

1.1.6 Other Tools
Both ORBIT and OMF have wiki pages with tutorials for using the testbed and the toolkit. The

OMF wiki includes forums for news and discussions about developing and using OMF.

1.2 ORCA/BEN
ORCA is an extensible architecture for on-demand networked computing infrastructure. Its

purpose is to manage the hosting of diverse computing environments (guests) on a common pool of
networked hardware resources such as virtualized clusters, storage, and network elements. Examples of
guests include network application services, virtual machines for personal computing, managed virtual
clusters for large-scale computation, or other networked systems. The hardware resources may be
owned and administered by multiple infrastructure providers, who control the terms of their use.

ORCA is based on a foundational abstraction of resource leasing. A resource lease is a contract
between a resource provider and a resource consumer (guest). The contract grants the consumer access
to some resource for a specified period of time, with additional contract terms defining the nature of the
resource and its configuration. Orca resource consumers use open leasing protocols and programmatic
interfaces to negotiate contracts and acquire and coordinate the underlying resources, optionally
assisted by brokering intermediaries.

Figure 3. From experiment description to experiment execution in ORBIT.

Lifecycle of a GENI Experiment 15 July 2009

 Page 5 of 14

Figure 4 shows the major components of ORCA. The Site Authorities are akin to GENI aggregate

managers: they control infrastructure resources at a particular site, administrative domain, or component
aggregate comprising as set of servers, storage units, network elements, or other components under
common ownership and control. Brokers are analogous to GENI clearinghouses: they mediate resource
discovery and arbitration by controlling the scheduling of resources at one or more sites over time.
Finally, Service Managers provide a runtime environment for guest applications. Guest applications
are distributed applications running on ORCA. They use Service Manager services to procure lease
contracts to use resources from one or more sites, learn about changes in resource status and adapt to
these changes.

The ORCA/BEN project is extending ORCA to be the control framework based on BEN, a metro-
scale experimental optical network in Research Triangle Park, North Carolina.

The above description of ORCA and the material in the remainder of this section is drawn from the
ORCA web site (http://nicl.cod.cs.duke.edu/orca/about.html), from the paper “Sharing Networked
Resources with Brokered Leases” (http://www.cs.duke.edu/nicl/pub/papers/shirako06.pdf) and from the
technical note “ORCA Technical Note: Guests and Guest Controllers”
(http://www.cs.duke.edu/nicl/pub/papers/control.pdf).

1.2.1 Experimenter Tools and Services
Experimenter tools and services in ORCA are envisioned to be guest applications similar to any

other distributed applications that run on ORCA. These applications run in the context of the Service
Manger shown in Figure 4.

At this time the ORCA project does not have any officially supported experimenter tools and
services other than the services provided by the Service Managers. The PlanetLab Plush tool has
however been ported to be an ORCA guest application. It is expected by the end of Sprial 1 the Gush
tool (Section 1.4.4) will be ported to be an ORCA guest application.

Figure 4. Major Components of ORCA.

Lifecycle of a GENI Experiment 15 July 2009

 Page 6 of 14

1.3 ProtoGENI
 ProtoGENI is based on the University of Utah Emulab testbed. In Spiral 1 the ProtoGENI

project is primarily focused on control framework issues. The experimenter workflow tools described
in this section are therefore primarily Emulab tools i.e. they do not take advantage of the added
ProtoGENI functionality. Much of the material in this section has been gathered from documentation at
https://users.emulab.net/trac/emulab/wiki.

1.3.1 Experimenter Registration
The ProtoGENI testbed is accessed by a web interface (http://www.emulab.net/). Experimenters

wishing to use the testbed must first register to create an account. Typically, someone who will be the
project leader requests permission from Testbed Ops/Admin, via the web interface, to create a project.
In academic parlance, a project leader is a "principal investigator." That person is expected to be
someone who is responsible, whose position is more or less verifiable, and is therefore accountable. The
project leader is held responsible for the actions of members of the project. People working on the
project (students, staff, etc.) will request permission from the project leader, also via the web interface,
to join the project. Once project members have been authorized by the leader, they can use the Web
interface to login, start experiments, reserve and configure nodes, etc..

1.3.2 Experiment Planning
An experimenter logged into Emulab can use a browsing tool, implemented as a Java applet, to

view available resources. The tool displays a resource name and a description. In the case of compute
resources, the default OS on that node is also listed.

Network topologies for experiments on Emulab are described using a scripting language very
similar to that used by the ns-2 network simulator. The experiment description includes defining nodes
and links in the network. The definition of a node includes giving it a name that is meaningful to the
experiment and the operating system to be loaded on the node. The definition of a link includes the
nodes it connects and its bandwidth, latency, queue type and packet loss rate. The script may also used
to specify how packets are to be routed in the network. Currently supported routing protocols are
Session (dynamic routing using the OSPF protocol running on all nodes in the experiment), Static
(routes are pre-computed by a distributed route computation algorithm running on the experiment
nodes) and Manual (experimenter specifies per node routing information).

Emulab provides a graphical tool that can be used to describe the network for an experiment; the
tool generates a corresponding ns file. The graphical tool is limited in its expressiveness and can be
tedious to use to specify large networks.

1.3.3 Experiment Deployment
Experimenters use the Emulab web interface to run experiments. The log on to Emulab and create

an experiment in the context of a project. They provide an experiment name, a short text description
and an ns file that describes the network topology for the experiment (Section 1.3.2). The testbed
processes the ns file to map the network described in the script to physical nodes and links. It also
assigns IP addresses to nodes.

When Emulab is done processing the ns script it sends the experimenter an email along with a
listing of the nodes in the network, physical machines to which these nodes have been mapped, IP
addresses and link characteristics. The Emulab configuration system will ensure these nodes are
configured with the specified operating systems and are ready to use. The network interfaces on the

Lifecycle of a GENI Experiment 15 July 2009

 Page 7 of 14

nodes are configured appropriately; the project’s NFS directory is mounted on every node so files can
be easily shared amongst the nodes; user accounts are created for project members; and the /etc/hosts
file is set up so other nodes can be referenced by name rather than IP address.

On receipt of this email the experimenter can use ssh to log into any of the nodes in the experiment.
The experimenter can then install any software needed for the experiment. Experimenters have root
access to their nodes and can change system configurations if needed. Experimenters can also have the
system automatically start up a program on each node from their project’s NFS mounted directory when
the node boots up; this is specified in the ns description of the experiment.

1.3.4 Experiment Execution and Instrumentation
NEED INFORMATION on Experiment control, instrumentation and measurement.

1.3.5 Experiment Sunsetting
Emulab does not have any formal archive for experiments where others can find them to replicate

or extend.

1.3.6 Other Tools
The Emulab project maintains a wiki page with tutorials and other documentation to help

experimenters use the testbed.

1.4 PlanetLab
PlanetLab consists of a collection of machines hosted by members of the PlanetLab consortium.

All PlanetLab machines run a common software package that includes a Linux-based operating system;
mechanisms for bootstrapping nodes and distributing software updates; a collection of management
tools that monitor node health, audit system activity, and control system parameters; and a facility for
managing user accounts and distributing keys. All PlanetLab related information in this section comes
from the PlanetLab web pages (http://www.planet-lab.org/).

PlanetLab provides a base set of tools such as PlanetLab shell (plcsh), a command-line tool, to set
up and deploy experiments. However, PlanetLab supports an xml-rpc interface that allows other
experimenter tools and services developed.

Gush and Raven are examples of two tools being developed in GENI Spiral 1 to support
experimentation with PlanetLab. This section describes experimentation with PlanetLab using these
tools. Information on Gush and Raven comes from http://gush.cs.williams.edu/trac/gush and
http://www.cs.arizona.edu/stork/ respectively.

1.4.1 Experimenter Registration
Researchers wishing to use PlanetLab get accounts on the system through an institution (typically

their home institution) that is a member of the PlanetLab Consortium. Institutions join the PlanetLab
Consortium by signing a membership agreement and connecting two or more nodes to the PlanetLab
infrastructure.

Researchers get an account by reading the PlanetLab Acceptable User Policy and completing a
form on the PlanetLab website. The form requires the user to select a PlanetLab consortium member
institution (typically the researcher’s home institution); the account request is sent to the PI of the

Lifecycle of a GENI Experiment 15 July 2009

 Page 8 of 14

institution for approval. When the PI approves the request the user gets an email confirming the
creation of an account.

PlanetLab uses an ssh public-key based authentication mechanism to allow researchers to connect
to PlanetLab resources (nodes). Experimenters create their own key pair and upload their public key to
the PlanetLab database.

Experiments in PlanetLab run within the contex of a slice. A slice is a collection of resources
distributed across multiple PlanetLab nodes. Experimenters are given a new slice or added to an
existing slice by the PlanetLab PI at their institution.

1.4.2 Experiment Planning
There are two different sets of tools available to PlanetLab experimenters for discovering resources

for experiments: CoMON and SWORD. CoMON collects statistics on PlanetLab nodes so
experimenters can query for lightly loaded nodes, most reliable nodes, popular nodes or nodes at a site.
The SWORD tool is based on CoMon in that it uses data collected by CoMON. The query language of
SWORD is more flexible and expressive than the CoMon query language.

1.4.3 Experiment Deployment
As mentioned earlier, PlanetLab experimenters must first obtain a slice to which they add resources

for experimentation. Experimenters are given a new slice or added to an existing slice by the PlanetLab
PI at their institution.

Gush users describe their experiment using the Gush experiment description language, based on
xml. The experiment description includes a description of the PlanetLab resources needed by the
experiment and the software packages to be installed in these resources.

After experimenters obtain PlanetLab slices they start up the Gush command line tool and use the
“load” command to load a file with their experiment specifications. They then use the Gush “run”
command to start the experiment. Gush parses the experiment specification, connects to the PlanetLab
central server to obtain information about available slices, finds resources that match the requirements
in the experiment specification, adds these resources to the slice if needed, and connects to these
resources. Gush optionally uses SWORD to find the appropriate PlanetLab resources. Finally, Gush
installs the specified software packages on these resources and starts the execution.

PlanetLab users may also use Raven/Stork, a more full-featured software deployment tool.
Raven/Stork is especially useful for long-running experiments where new versions of software may
have to be deployed during the course of the experiment or software re-deployed on nodes that might
have re-booted.

1.4.4 Experiment Execution and Instrumentation
Gush can also be used to monitor and control a running experiment. For example, the Gush “info”

command can be used to get status of the slice, nodes in the slice or activity such as file transfers.
Gush can also be used to specify actions to be taken of parts of the experiment fail. By default,

Gush reacts to process failures and resource failures. The standard recovery options include restarting
failed processes, reconnecting to failed resources, finding and configuring replacement resources, and
aborting the entire experiment. Custom application-specific failure recovery behaviors can also be
described within the experiment specification.

INSTRUMENTATION TOOLS/SERVICES ON PLANETLAB?

1.4.5 Experiment Sunsetting

Lifecycle of a GENI Experiment 15 July 2009

 Page 9 of 14

PlanetLab does not have any formal archive for experiments where others can find them to replicate
or extend.

1.4.6 Other Tools
The PlanetLab project is also developing a command-line tool called SFI for use by experimenters.

1.5 TIED/DETER
The TIED/DETER federation system allows a researcher to construct experiments that span

testbeds by dynamically acquiring resources from other testbeds and configuring them into a single
experiment. As closely as possible that experiment will mimic a single DETER experiment. The
DETER testbed is a public facility for medium-scale repeatable experiments in computer security.
Built using Utah's Emulab software, the DETER testbed has been configured and extended to provide
effective containment of a variety of computer security experiments, including defense against attacks
such as DDoS, worms, viruses, and other malware, as well as attacks on the routing infrastructure.

TIED/DETER supports creation of cohesive experiments (slices) from independently administered
resources (components/aggregates). Because resources are independently administered and serve
different communities, the authorization system needs to support a rich delegation structure, formal
semantics, efficient negotiation, and clear auditing. The Attribute Based Access Control (ABAC)
[http://www.isso.sparta.com/research_projects/security_infrastructure/abac_overview.html] system
meets those requirements; TIED is integrating this into the federation system.

To make use of widely distributed components it is helpful to establish guaranteed network
connections between them. TIED is addressing this by federating with testbeds that represent
dynamically allocatable wide-area network resources. The prototyping plan is to use DRAGON
interfaces to configure these resources.

Much of the information in this section comes from http://www.isi.deterlab.net,
http://groups.geni.net/geni/wiki/TIEDClearinghouse, and http://seer.isi.deterlab.net/trac.

1.5.1 Experimenter Registration
Creation of a TIED/DETER user account is very similar to that with ProtoGENI/Emulab: The user

goes to a web page (http://www.isi.deterlab.net/) and requests an account. As with Emulab, the user
can request to join an existing project or create a new project.

A registered TIED user has access to the various aggregates TIED works with and can create slices
across them.

1.5.2 Experiment Planning
Expeiment planning is similar to ProtoGENI/Emulab: Experimenters can log into their

TIED/DETER accounts and browse available resources.

1.5.3 Experiment Deployment
For TIED, slice management is the creation and manipulation of experiments that span multiple

facilities. The facilities are aggregates, each of which controls access to a set of resources. Currently
TIED supports creation of slices across testbeds with an Emulab interface and that run instances of a
daemon that is the TIED/DETER aggregate manager.

Lifecycle of a GENI Experiment 15 July 2009

 Page 10 of 14

TIED's slice management features can be accessed through a simple web interface that makes
common actions straightforward, and a command line interface that is more expressive for users with
sophisticated needs.

Experimenters can create a slice either by activating one of the existing slice descriptions, which
will create the slice based on its last configuration, or by going directly to the slice creation page and
providing a slice description and a name. Slice descriptions are ns files similar to the
ProtoGENI/Emulab network description, extended to describe the embedding of nodes in the various
aggregates.

TIED keeps a record of slices created and allows users to recreate them or terminate running ones
through a web interface. This web interface is show in Error! Reference source not found.. The
image associated with each slice listed in the figure shows the logical topology of the slice. The master
testbed column indicates which testbed is exporting its user environment into the experiment; for TIED
slices, this will usually be the DETER testbed. The project column will be TIED for TIED

experimenters; it indicates that the DETER TIED project is being exported into the slice. The name of
the slice is a mnemonic name attached to the slice. There is also a button to retrieve the slice
description used to create this slice, either to inspect it or to copy it for extension. Finally there is an

Figure 5. TIED Slice management interface.

Lifecycle of a GENI Experiment 15 July 2009

 Page 11 of 15

indication of the slice's status (active, inactive, swapping, or unknown). Based on the current status
there are buttons to create or terminate it. Termination removes the nodes from active use, but the
description remains in this database, so a user may recreate it at a later time.

As mentioned earlier, resources are added to a slice by uploading a slice description.

1.5.4 Experiment Execution and Instrumentation
The SEER experiment control tool is a useful way to manipulate a TIED experiment to both carry

out the experiment and to examine real time data from the experiment. Other Emulab-style
measurement gathering and event systems may also be used with TIED.

To run and manage an experiment using SEER, experimenters must install the Java-based SEER
GUI on their workstations. Once the experiment is swapped in (similar to experiment swap-in in
Emulab), the experimenter starts up the SEER GUI and attaches to the experiment. Users must supply
their TIED username, password and ssh passphrase to connect to their experiments.

Additionally, experimenters must modify the ns file describing their experiment to: (1) Create an
additional unconnected node in the experiment called ‘control’ to gather and display statistics and act as
the remote GUI client, (2) Specify the SEER agents to run on each node in the topology, and (3) Have
the script run a SEER provided python script on each node when it starts up.

Figure 6. SEER Graphical User Interface.

Lifecycle of a GENI Experiment 15 July 2009

 Page 12 of 14

The SEER GUI includes a number of different views (implemented as tabs in the interface) to
control and visualize the experiment (Figure 7). The “controls” tab on the GUI is used to associate
different types of traffic generators to the nodes in the network. Examples of traffic generators include
Web, VoIP and FTP traffic. Different types of attack traffic and network defenses can also be
associated with these nodes. Finally, the “controls” tab allows different packet analysis tools such as
TCPDump to be started up on nodes in the network.

Another tab, labeled “Topology” on the SEER graphical user interface can be used to visualize the
network and traffic on the network links. Clicking on the “Topology” tab causes the SEER interface to
obtain logical information about the slice and populate the topology window. To get a real-time
summary of traffic at a node, the experimenter places the mouse pointer on the node in the topology
window, right clicks to access the node menu, and requests a graph. The graph appears under the
"graphs" tab.

1.5.5 Experiment Sunsetting
TIED does not have any formal archive for experiments where others can find them to replicate or

extend.

1.5.6 Other Tools
The TIED project maintains a web page with documents and videos to help experimenters get

started with TIED and SEER.

2 Summary of Experimenter Tools and Services Available

 ORBIT ORCA ProtoGENI/Emulab PlanetLab DETER

Experimenter
Registration

ORBIT
consortium
members
register on
ORBIT web
site.
Approved by
designated
person at
member
institution.

 Project leader
applies for account
on web site.
Account approved
by Emulab admin.
Project team
member accounts
approved by
project leader.

PlanetLab
consortium
members can
apply for
accounts.
Approval by
PlanetLab PI at
member
institution.

Similar to
Emulab.

Experiment
Planning and
Specification

Test and
debug small
scale version
of testbed.
Experiment
described
using script
written in
Ruby-based
language.

 NS-2 like scripting
language to
describe
experimental
network including
OS images to be
loaded on network
nodes.

CoMON and
Sword for
resource
discovery.
GUSH
experiment
specification
language.

Similar to
Emulab. Web
tool to create
slices from
scratch or one
like a
previously
created slice

Lifecycle of a GENI Experiment 15 July 2009

 Page 13 of 14

Experiment
Deployment

On-line
calendar to
request and
get access to
testbed. Log
into testbed
console to
upload
software.
Experiment
controller
interprets
experiment
description,
loads software
into nodes and
loads software
into nodes.

 Experimenters
have ssh access to
nodes: can upload
any software onto
these nodes.

GUSH
interprets
experiment
specification to
obtain
resources, and
install software
on nodes.
Raven/Stork
may also be
used for
deploying
software on
nodes---it is
especially
useful for
long-running
experiments.

Same as
Emulab.

Experiment
Control

Commands to
turn nodes on
and off.

GUSH? GUSH: To
start, stop,
pause
experiments.
GUSH also
supports
monitoring of
experiment and
specification of
handlers that
are invoked if
nodes in the
experiment
crash.

SEER

Instrumentation
and
Measurement

Measurement
system (OML)
has clients on
each node that
collect
measurements
and send to a
central
collection
server.
Measurements
include those

 SEER can be
used to
visualize
network
traffic to/from
a node in the
experiment.

Lifecycle of a GENI Experiment 15 July 2009

 Page 14 of 14

generated by
the experiment
software.

Sunsetting
Tools

None None None. None

Other Tools Wiki pages
with tutorials.
News and
discussion
pages on OMF
wiki.

 Wiki pages with
tutorials and other
documentation.

Wiki pages
with tutorials
and other
documentation.

Wiki pages
with tutorials
and other
documentation

