
Enterprise GENI

Guido Appenzeller, Nick McKeown,
Rob Sherwood, Guru Parulkar
Stanford University

Build from two sides: The Transcontinental Railroad Model
GENI DESING PROCESS

Network Substrate Control Framework

Bottom Up:
• Experimental Network

Infrastructure
• Local Infrastructure

Management

Top Down:
• Design of the control

frameworks
• Naming, Identities,

Authorization, RSpec

Eventually both sides meet
THE GOAL

WHERE ARE WE?

AGENDA

• Enterprise GENI
‣ Review: OpenFlow
‣ Status Enterprise GENI
‣ Control Framework Requirements

• Control Framework
‣ Our Perspective

• Proposal

AGENDA

• Enterprise GENI
‣ Review: OpenFlow
‣ Status Enterprise GENI
‣ Control Framework Requirements

• Control Framework
‣ Our Perspective

• Proposal

Ethernet Switch

Data Path (Hardware)

Control PathControl Path (Software)

Data Path (Hardware)

Control Path OpenFlow

OpenFlow Controller

OpenFlow Protocol (SSL)

FLOW TABLE ENTRY
Allows to make forwarding decisions based on Layers 1-4

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Rule Action Stats

1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline

+ mask what fields to match

Packet + byte counters

Controller

PC

Hardware
Layer

Software
Layer

Flow Table

MAC
src

MAC
dst

IP
Src

IP
Dst

TCP
sport

TCP
dport

Action

OpenFlow Client

5.6.7.81.2.3.4 port 1

port 4port 3port 2port 1

1.2.3.45.6.7.8

OPENFLOW EXAMPLE
Forwarding happens at line rates

SWITCH BASED VIRTUALIZATION
Exists for NEC, HP switches but not flexible enough for GENI

Normal L2/L3 Processing

 Flow Table

Production VLANs

Research VLANs

Controller

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Protocol

OpenFlow FlowVisor
& Policy Control

Craig’s
Controller

Heidi’s
ControllerAaron’s

Controller

OpenFlow
Protocol

FLOWVISOR BASED VIRTUALIZATION

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Protocol

OpenFlow
FlowVisor & Policy Control

Broadcast Multicast

OpenFlow
Protocol

http
Load-balancer

FLOWVISOR BASED VIRTUALIZATION
Separation not only by VLANs, but any L1-L4 pattern

AGENDA

• Enterprise GENI
‣ Review: OpenFlow
‣ Status Enterprise GENI
‣ Control Framework Requirements

• Control Framework
‣ Our Perspective

• Proposal

FLOWVISOR STATUS
• Tested in 15 node, intercontinental WAN
• Tested with five experiments concurrently

Performance is ready for production deployment
FLOWVISOR PERFORMANCE

Tested in WAS and LAN environment
FLOWVISOR EXPERIMENTAL TOPOLOGY

STANFORD OPENFLOW DEPLOYMENT

Phase 3 (2H2009)Phase 2 (1H2009)Phase 1 (ongoing)

• Gates Building,
3A Wing only

• Two switches
(HP ProCurve 5400)

• 4 Wireless APs
• ~25 users

• Gates Building,
All Floors

• 23 Switches
(HP ProCurve 5400)

• Wireless TBD
• Hundreds of users

• Packard and CIS
Buildings

• Switch Count TBD
(HP ProCurve 5400)

• Wireless TBD
• > 1000 users

Stanford Enterprise GENI
• Small production deployment can be virtualized today
• Stanford Enterprise GENI targeted for GEC5 time frame

OpenFlow Switches are carrying production traffic today
STANFORD OPENFLOW USAGE

OPENFLOW ROADMAP 2009

OpenFlow Campus Trials (2H2009)
• Idea originated in CIO Meeting organized by GPO
• OpenFlow deployments at 8 Universities across the U.S.
• Four Vendors: Cisco, Juniper, HP, NEC

OpenFlow Internet2 Backbone (today)
• Part of the GEC4 Demo
• Based on NetFPGA, Juniper MX

Obvious Next Steps:
• Virtualize them using the FlowVisor
• Make them accessible via Aggregate Manager

5-6 Deployments plus Backbone
GOAL FOR OPENFLOW SUBSTRATE LATE 2009

Goal is in late 2009 we will have an initial
Enterprise GENI substrate that spans the country.

Now we need is a Control Framework!

AGENDA

• Enterprise GENI
‣ Review: OpenFlow
‣ Status Enterprise GENI
‣ Control Framework Requirements

• Control Framework
‣ Our Perspective

• Proposal

USE CASE: VLAN BASED PARTITIONING

Basic Idea: Partition Flows based on Ports and VLAN Tags
• Traffic entering system (e.g. from end hosts) is tagged
• VLAN tags consistent throughout substrate

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

* * * * 1,2,3 * * * * *

* * * * 7,8,9 * * * * *

* * * * 4,5,6 * * * * *

USE CASE: NEW CDN - TURBO CORAL ++

Basic Idea: Build a CDN where you control the entire network
• All traffic to or from Coral IP space controlled by Experimenter
• All other traffic controlled by default routing
• Topology is entire network
• End hosts are automatically added (no opt-in)

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

* * * * * 84.65.* * * * *

* * * * * * 84.65.* * * *

* * * * * * * * * *

USE CASE: AARONʼS IP

• A new layer 3 protocol
• Replaces IP
• Defined by a new Ether Type

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

* * * AaIP * * * * * *

* * * !AaIP * * * * * *

Needs to be changed: Multiple switches, controller under control of
experimenter, graphics.

ENTERPRISE GENI ARCHITECTURE

Differences to other Implementations
OPENFLOW BASED GENI

• No Components or Component Managers (in the GENI sense)
‣ Aggregate is managed centrally by the FlowVisor
‣ No external login into components of any kind

• Forwarding decisions done by external service
‣ FlowVisor connects to Experimenterʼs OpenFlow Controller

• The Network can be sliced at any layer
‣ Separation by physical topology or VLAN (L1)
‣ Separation by MAC addresses (L2)
‣ Separation by IP blocks (L3)
‣ Separation by port (L4)

OVERALL REQUIREMENTS

From a Control Framework, we initially need:
• Protocol to talk to GCH
• Infrastructure Description (Switches, Links)
• Slice Management Operations (Initialize, Release)
• Define and Manage Traffic Sources and Sinks
‣ Opt-in or Opt-out for hosts
‣ Connection with Internet, GENI Backbone, other networks

• Mechanism for specifying external controllers

TECHNICAL REQUIREMENTS

Protocol
• Clearly Specified and Verifiable
• Language, OS and Development Tool Agnostic
• As few external dependencies as possible (if any)
• Ideally: Independent reference implementations and test suite

RSpec
• Clearly Specified (allow some interoperability)
• Extensible (GENI is work in progress)
• Easy to implement

AGENDA

• Enterprise GENI
‣ Review: OpenFlow
‣ Status Enterprise GENI
‣ Control Framework Requirements

• Control Framework
‣ Our Perspective

• Proposal

RSPEC

• Currently XML with and XSD definition
‣ Clearly typed, works great

• Specification in flux, no complete spec proposed yet
‣ Initially we expect everyone to define their own
‣ This means initially no or little interoperability
‣ Defining a standard that works for everyone will be hard work

• Some existing XSDʼs have heavy external dependencies
‣ For our substrate, this seems undesirable

XSD definition is dependent on external references, development tool
RSPEC

<xsd:complexType name="LinkSpec">
 <xsd:sequence>
 <xsd:element default="0" ecore:unique="true" maxOccurs="unbounded"
 minOccurs="0" name="bw" type="ecore:EInt"/>
 <xsd:element default="0" ecore:name="max_alloc" ecore:unique="true"
 maxOccurs="unbounded" minOccurs="0" name="max_alloc" type="ecore:EInt"/>
 </xsd:sequence>
 <xsd:attribute default="""" ecore:changeable="false"
 ecore:unsettable="false" name="type" type="ecore:EString"/>
 <xsd:attribute ecore:name="init_params" name="init_params"
 type="ecore:EByteArray"/>
 <xsd:attribute default="0" ecore:name="min_alloc" ecore:unsettable="false"
 name="min_alloc" type="ecore:EInt"/>
 <xsd:attribute ecore:changeable="false" ecore:reference="pl:IfSpec"
 name="endpoint" use="required">
 <xsd:simpleType>
 <xsd:list itemType="xsd:anyURI"/>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute ecore:name="start_time" name="start_time" type="ecore:EDate"/>
 <xsd:attribute name="duration" type="ecore:EDate"/>
</xsd:complexType>

AUTHENTICATION, AUTHORIZATION AND NAMING

Current Architecture
• Client and Server certificates to authenticate connections
• Certificate Infrastructure for signing tickets, GIDs etc.

PKI is extremely heavyweight, more complexity than we need
• We only need one server side certificate for SSL
• All other authentication can be done with shared secrets
‣ Server side SSL certs and shared secrets are the de-facto

standard in the internet
‣ Why would we need anything else for GENI?

• Existing naming schemes are sufficient (donʼt need GIDs)

Based on PlanetLab Central
CURRENT CONTROL FRAMEWORK PROPOSAL

PlanetLab Implementation of the SFA February 10, 2009�

 7

Figure 3.4: Another testbed (Emulab) taking advantage of users and slices registered in the
PlanetLab registry.

3.4 Multiple Aggregates

The scenario depicted in Figure 3.5 spans multiple aggregates—PlanetLab and VINI—each
responsible for its own set of components. That is, VINI and PlanetLab are distinct management
authorities, each responsible for a distinct aggregate of components. In this case, VINI does not
operate its own registry or slice manager, and PlanetLab’s slice manger presents users with a
unified view of all the components available on both systems, hiding the fact that its global
view spans multiple aggregates.

Figure 3.5: VINI and PlanetLab represent independent aggregates (and corresponding
management authorities), unified by a single slice manager.

Source: PlanetLab Implementation of the Slice-Based Facility Architecture. February 10, 2009.

Based on PlanetLab Central
CURRENT CONTROL FRAMEWORK PROPOSAL

PlanetLab Implementation of the SFA February 10, 2009�

 7

Figure 3.4: Another testbed (Emulab) taking advantage of users and slices registered in the
PlanetLab registry.

3.4 Multiple Aggregates

The scenario depicted in Figure 3.5 spans multiple aggregates—PlanetLab and VINI—each
responsible for its own set of components. That is, VINI and PlanetLab are distinct management
authorities, each responsible for a distinct aggregate of components. In this case, VINI does not
operate its own registry or slice manager, and PlanetLab’s slice manger presents users with a
unified view of all the components available on both systems, hiding the fact that its global
view spans multiple aggregates.

Figure 3.5: VINI and PlanetLab represent independent aggregates (and corresponding
management authorities), unified by a single slice manager.

Source: PlanetLab Implementation of the Slice-Based Facility Architecture. February 10, 2009.

GENI
Clearing House

SOAP BASED GENI PROTOCOL

Essentially XMPRPC between Python libraries
GENIWRAPPER PROTOCOL

Implemented in geniwrapper:
• Basic idea: Encode messages in XML
• Implemented with Pythonʼs SimpleXMLRPCServer/XLMRPCLib
‣ Create a proxy object server = xmlrpclib.ServerProxy()
‣ Now I can call server.function(parameters)
‣ Python will marshal/de-marshal object on each side automatically

 server = ServerProxy("http://clearinghouse.geni.net")

 try:

 self.server.get_ticket(credential, name, rspec)

Source: Geniwrapper from http://svn.planet-lab.org/svn/geniwrapper, version Feb 10th

Wire Format (Simplified)
GENIWRAPPER PROTOCOL

<?xml version='1.0'?>
 <methodCall>
 <methodName>create_slice</methodName>
 <params>
 <param>
 <value><string>-----BEGIN CERTIFICATE-----
MFcwTQIBATADBgEAMAAwHhcNMDkwMjA0MTEzNTM0WhcNMTQwMjAzMTEzNTM0WjAX
MRUwEwYDVQQDEwxSb2IgU2hlcndvb2QwCDADBgEAAwEAMAMGAQADAQA=
-----END CERTIFICATE-----</string></value>
 </param>
 <param>
 <value><string>rob.sherwood@stanford.edu</string></value>
 </param>
 <param>
 <value><string>some stuff</string></value>
 </param>
 </params>
</methodCall>

Interface is dynamically generated at runtime
GENIWRAPPER PROTOCOL

Source: Analysis of Geniwrapper from http://svn.planet-lab.org/svn/geniwrapper, version Feb 10th

XMLRPC Implementation Consequences

• XML structure of the
protocol is based on
types of python objects

• Python is a dynamically
typed language

• Programmer can change
types of objects at run
time

• Protocol may change at run
time

• No real definition what the
“correct” protocol is

• Essentially impossibly to
implement protocol in other
languages.

• Requires use of
Geniwrapper Python code.

• Security Implications

AGENDA

• Enterprise GENI
‣ Review: OpenFlow
‣ Status Enterprise GENI
‣ Control Framework Requirements

• Control Framework
‣ Our Perspective

• Proposal

The most frequently used remote APIs today are all SOAP or REST
SUCCESSFUL PROTOCOLS

API Name API Type Auth Type

Google Search API REST/JSON* SSL+Secret

PayPal SOAP SSL+Secret

EBay SOAP SSL+Secret

Microsoft Live Search SOAP SSL+Secret

Amazon EC2 SOAP SSL, Secret, SSH

Yahoo Search REST SSL+Secret

OpenID REST (sort of) SSL+HMAC

Geniwrapper Dynamic XML RPC SSL+Full PKI
Geni Ultralight SOAP SSL+Secret

For protocols, specification should drive implementation
INTERFACE DESIGN

Specification

Implementation

Specification

Implementation

Use Lightweight SOAP Protocol
PROTOCOL PROPOSAL

• Back to Plan A: Use SOAP to define the protocol
‣ WSDL “Contract” between control framework and substrates
‣ Easy to achieve interoperability
‣ Language independent
‣ Platform independent

• If done right, this is extremely lightweight and developer friendly
‣ Marshalling/Demarshalling code is generated automatically

• Tools to do this exist for any language
‣ Great debugging tools exist

Changes are minimal, only topmost Python layer is affected
CHANGES TO GENIWRAPPER

Current implementation creates API interface via the server proxy at run time:

server = ServerProxy("http://clearinghouse.geni.net")

// This generates XML structures at run time

self.server.get_ticket(credential, name, rspec)

With SOAP, interface is defined in the WSDL and server proxy is generated via
command line tool:

wsdl2py http://www.geni.net/wsdl.xml

from GeniClearingHouse import *

server = GCHServiceLocator("http://clearinghouse.geni.net")

r = GCHGetTicketRequest()

r.credential, r.name, r.rspec = credential, name, rspec

server.GetTicker(r)

Eliminate use of PKI by centralizing control
PROTOCOL CHANGES

Vastly simplified Security Model
• One SSL Cert at GCH
• Shared secret to authenticate

Aggregate Manager
• No more ticket signing
• No more certificates in global

identities
• No more PKI required
• If we need assertions in the future,

use HMAC

GENI
Clearinghouse

Aggregate
Manager End User

All Communication via GCH
• e.g. slice management

Very small set of mandatory messages
SIMPLIFIED AGGREGATE MANAGER API

Messages from AM to GCH
• Registry Interface
• Update, Add, Delete Information

Messages from GCH to AM
• CreateSlice(RSpec)
• DeleteSlice(RSpec)

Observations
• This is sufficient to manage Enterprise GENI

‣ What would ResetSlice mean for a stateless aggregate?
• Aggragates should not be burdened by complexity they donʼt need
‣ Make other messages optional

De-facto internet standards are email addresses, host names and URLs
NAMING

• Principals/Users: email addresses
‣ Human readable
‣ Can be used for bootstrapping authenticators
‣ Future integration with external authentication (OpenID etc.)

• Hosts/Nodes: domain names
‣ Hirarchical, globally unique

• Everything else: URLs
‣ Essentially add information to host names
‣ What else do we really need?

For Enterprise GENI, we donʼt need complex structure of GID

WHY A SIMPLER CONTROL FRAMEWORK?

Today
• We are ready to start integration with a GCH
• The currently proposed framework does not fit our needs

‣ Substantial complexity that we (at least initially) donʼt require
‣ Dependency on large code base that is actively being developed

• Not a short-term solution for us

By 2H2009
• We expect to have a backbone substrate
• We expect to have 5-7 local substrates with 20-100 switches
• Other groups will have their own (potentially larger) substrates

If we have a simple control framework, we hope a first GENI deployment
would be usable for researchers by December 2009

Thank you!

