ABAC Web Service Installation Manual

Document ID: PROTOGENI-ABAC-INSTALL-1.0
Version: 1.0

Prepared By: Jay Jacobs

Contents

L OVEIVIEW ..ttt sttt e s e e s s bt e s s bbbt e e s bt e e s b e e e s a e e e s a e e e s ba e e e 3
1.0 REFEIENCE ...ttt ettt ettt ettt e s e st e e s bt e e bt e e sab e e s bt e e s abe e e be e e aabee s be e e sabeesabeeeanreesbeeesareenn 3
RV =T g I D T=Y o 1T oo [T ol [USRS 3
1.3 Building and DeployiNg ABACuuiiiieiiiee ettt eeitee s ssite e e e stte e e s sbee e s ssabee e e e sbee e s esabeeesssabeeesenareeesennrenas 4

B o] TotV A CT=T =T - 1 4 [o PSP 5
D oY [TV A O Y- [o PSS SROt 6

2.1.1 Certificate GENEIAtIONc.eiiiieiieeieeeee ettt sttt st e b e b e s be e st eae et s 6
2.1.2 Credential GeNEIratioN.o iii ittt ettt e st e st s b e e s be e e bt e e s b e e sneeesareean 7
2.1.3 Credential Verificationo.ei ittt ettt et sbe e saree s 7
2.1.4 Policy GENEration EXAamMPIEuiiiieiiii ettt ettt e rree e e s e e e e e e s senbe e e e e nnbee e e e nnreeas 7
B AN = VX O AN o B T T of T o o o S 8
2.2.1 CoNtEXE Creationeeiiiiiiiei e e 8
2.2.2 Credential POPUIGTIONooii et ettt e e e e be e e e e eabee e e e enbae e e e enbeeaeeenraeas 8
2.2.3 ACCESS REQUEST ... esaseaassaasasasasasasasasasasasanenanns 8
2.3 EXAMPIE USAEE cueeiiiuiiiei ittt e ettt e sttt e e e ettt e e e ette e e s st eeesebteeeesabteeeeabteeeessteeeessteaeeastaeeeabeeeeearraeeeanes 9
3. Reference Component Manager TESESccccuiieieiiieeeeciee e et e e eeree e e rtee e e etbe e e s esabeeeeesabeeesennbeeeeennsenas 10
R 0 R 1= Y= YT o OO O PO PP PR OPPPPPOPTPTOR 10
R A B T[Tl o= PSP PP PR OPPPPOPPPROR 10
30,3 CrEatESIIVET et sttt e r e e sane e 11

I B 1] 1= S ol T 11

1. Overview

This document describes how to run and install the ProtoGENI ABAC integration. The ABAC web
service is a stand-alone web service for attribute-base access control. The initial integration is
implemented for use with the ProtoGENI reference component manager implementation; however, usage
is not limited to core framework usage. Client applications are supplied for Java and perl.

1.1 Reference

The ABAC web service distribution can be found at http://groups.geni.net/geni/wiki/ABAC. The
distribution contains ABAC, an umodified reference-cm-2.0.2, and a modified reference-cm-2.0.2a.

Details and code for the ProtoGENI reference component manager can be found at
http://www.protogeni.net/trac/protogeni/wiki/ReferenceCM . The current ABAC integration supports
version 2.0.2.

The reference component manager is tested using the standard ProtoGENI test scripts. The details for
testing and the test scripts are available at http://www.protogeni.net/trac/protogeni/wiki/TestScripts.

1.2 System Dependencies

The ABAC web service can be run on any machine with a recent (> 1.4) of the Java virtual machine. The
JDK will be necessary for building the ABAC software as described in section 4.0. The prerequisites
include: JDK (1.6.), tomcat (5.5), axis (1.x), Bouncy Castle (1.38), junit(1.0), ant(1.4), jython(2.4), and
m2crypto. The emulab experiment contains a reference-cm experiment image and the ABAC-WS
requires the following packages:

A sample of installation commands for the reference-cm are included below:

sudo yum -y install gcc

sudo yum -y install httpd

sudo yum -y install libvirt

sudo yum -y install mod ssl

sudo yum -y install mysgl-server

sudo yum -y install perl-Crypt-SSLeay
sudo yum -y install perl-Frontier-RPC
sudo yum -y install perl-RPC-XML

sudo yum -y install perl-suidperl
sudo yum -y install perl-TimeDate
sudo yum -y install perl-XML-LibXML
sudo yum -y install perl-XML-Simple
sudo yum -y install gemu

sudo yum -y install xmlsecl

sudo yum -y install xmlsecl-openssl

The reference-cm client scripts are written in python and require the m2crypto cryptographic library
which can be installed as follows:

sudo yum -y install m2crypto

A sample of installation commands for ABAC are included below:

sudo yum -y install java-1.6.0-openjdk

sudo yum -y install java-1.6.0-openjdk-devel
sudo yum -y install bcprov

sudo yum -y install junit

sudo yum -y install jython

sudo yum -y install ant

The following packages are also useful but not necessary.
sudo yum -y install lynx

sudo yum -y install xorg-xll-fonts-Typel
sudo yum -y install graphviz

Lynx is a command-line browser which is useful for checking axis/tomcat status when port forwarding is
not available. The type 1 fonts and graphviz package are needed for the negotiation visualization software

1.3 Building and Deploying ABAC

The protogeni-abac emulab experiment has a precompiled version of ABAC and the necessary
dependencies install. To build and deploy ABAC from source, please use the following instructions.
Apache tomcat is needed—an archive is available in /proj/geni/tarfiles/ABAC. The default
tomcat location is /usr/local/tomcat5.5

1. Set the JAVA_HOME environment variable
export JAVA HOME=/usr/local/jdk1l.6.0

2. Download and unpack the source archive from at http://groups.geni.net/geni/wiki/ABAC:

tar jxvf abac-src.tar.bz?2
3. Build the main ABAC library
ant compile
4. Build the wsdl classes and create ws-abac.jar
ant ws-jar # compiles wsdl classes and deployment jar

Note: The wsdl target should not overwrite FeddABACBIindingImpl.java and you
should see the following output:

http://groups.geni.net/geni/wiki/ABAC

[java] FeddABACBindingImpl.java already exists, WSDL2Java will not
overwrite it.

5. As root deploy the jar and deployment descriptor
sudo ant deploy
Note: server-config.wsdd appears in the directory from which

ant is run. This means that if you invoke ant from the wsdl directory, it will
deploy the jar file but not the wsdd file and the target will fail.

6. Reload the axis webapp from a page similar to: https://localhost:8443/manager/html, where localhost
is the machine name where tomcat is installed and ABAC deployed.

Click reload on the right. Click the name axis (or the axis deployment directory). For development
changes restart the tomcat servlet engine using the following:

export JAVA HOME=/usr/lib/jvm/java-openjdk
sudo -E /usr/local/tomcat5.5/bin/startup.sh

For convenience, startup and restart scripts are available in the test directory.

7. Add a the bouncy castle provider to JRE’s trusted path. On emulab systems, the bcprov. jar file
need to be symbolically linked into jre/1ib/ext as follows:

cd $JAVA HOME/jre/lib/ext
sudo 1ln -s /usr/share/java/bcprov.jar

Warning: The bouncy castle provider must be linked into jre/lib/ext or the webservice will generate a
server error. Some distributions may do this by default.

2. Policy Generation

ABAC policies are a combination of X.509v3 identity certificates and X.509v2 attribute certificates.
Policy generation is still in development. For credential issuers that do not have an emulab generated key
pair and public certificate. A script is supplied to automate the process of credential creation, so the user
can reuse existing PKI or customized keystores for crednential generation process. The next section
describes the process in detail.

https://localhost:8443/manager/html

2.1 Policy Creation

ABAC policy is implemented as a set of identity certificates ()X.509v3 identity certificates) and credential
certificates (X.509v2 attribute certificates). Identity certificates are identical in structure to the X.509
certificates already in use by ProtoGENI and emulab and are required for verifying the credential
certificates. The private keys associated with credential issuer should be secured once the credentials have
been issuer. In special cases, it may be desirable to destroy the private key after credential creation (e.g.
once-time use).

2.1.1 Certificate Generation

For credential issuers who do not have an emulab generated key pair and public certificate, key-gen.sh is
a script to generate self-signed 2048-bit X.509 certificates and private key in PEM format:

key-gen.sh <issuer-name> <passphrase> <distinguished name>
where distinguished name should be of a form similar to:

DN="/C=US/ST=California/O=ProtoGENI\
/CN=common-name /emailAddress=issuer@myorg.org"

For examples of distinguished names, please refer to RFC2459, which is available at
http://www.ietf.org/rfc/rfc2459.txt.

Java's keytool requires private keys unlocked and in DER format, so the script will also convert the
private keys into DER format. Modify the following example for each issuer:

./create-pair.sh geni <passphrase> \
"/C=US/ST=California/0O=NSF GENI/CN=geni/emailAddress=genilgeni.org"

When using Emulab generated certificates and private keys, only the private keys need to be converted.
PEM-encoded public key certificates do not require any special security. The addpair.py script can be
used to add a key-pairs to their respective keystores for credential generation.

./addpair.py -a geni -k public.jks -s signatory.jks -p <passphrase>

Only the —a option is mandatory. A —h help option will print usage information.

2.1.2 Credential Generation

Credential generation can scripted using the jython CertFactory a priori or a run-time using the the
createcredential jython script as follows:

./createcredential.py -o <output file> -p <keystore-passphrase> \
-k <keystore> -c <credential text>

The output files is a base64 encoded X.509 v2 attribute certificate, signed by the issuer alias specified.

2.1.3 Credential Verification

Generated credentials can be verified using the ctest.sh with the full path name of the base-64 encoded
ABAC credential. Validation is done against the deployed public keystore.

./ctest.sh geni-user.b64

2.1.4 Policy Generation Example

Policy generation is a two-stage process and can be automated using the createpolicy.py script, which
converts a series of RT, credentials into directives for creating identity and attribute certificates using the
tools in the previous sections. A sample configuration for ProtoGENI should look similar to the
following:

geni.all <-- geni.user

geni.user <-- geni.admin

geni.admin <-- geni.creator

geni.creator <-- urn:publicid:IDN+emulab.net+user+jjacobs
geni.creator <-- urn:[GeniUser: utahemulab.jjacobs, IDX: 1]

Running the createpolicy.py script will generate something similar to the following:

create the key pair for geni
./create-pair.sh geni importkey \
"/C=US/ST=California/O=GENI/CN=geni/emailAddress=geni@geni.org"
add keys for geni into default keystores
./addpair.py -v -a geni
Credential generation follows
./createcredential.py -o geni-all-geni-user.b64 \
-c "geni.all <-- geni.user"
./createcredential.py -0 geni-user—-geni-admin.b64 \

-c "geni.user <-- geni.admin"
./createcredential.py -0 geni-admin-geni-creator.b64 \
-c "geni.admin <-- geni.creator"

./createcredential .py -0 geni-creator-urn-jjacobs.b64 \
-c "geni.creator <-- urn:publicid:IDN+temulab.net+user+jjacobs"

./createcredential.py -0 geni-creator-hrn-jjacobs.b64 \
-c "geni.creator <-- urn:[GeniUser: utahemulab.jjacobs, IDX: 1]"

2.2 ABAC API Description

The ABAC web services have java, perl, and python clients. For testing the web service sample scripts for
java clients are provided. Use the following examples for creating a negotiation context and performing
an access request against it:

2.2.1 Context Creation

A trust negotiation needs to be performed within a specific negotiation context. Use the create.sh script to
create a context with a specified alphanumeric id.

create.sh <context id>

2.2.2 Credential Population

The X.509 attribute certificates are loaded into the negotiation context using the add.sh script.

add.sh <context id> <x509v2 attribute cert file>

2.2.3 Access Request

An access request initiates the a trust-target negation within a given negotiation context. The request
returns a Boolean result on whether issuer.role name can be matched against the subject.

trust.sh <context id> <issuer> <role name> <subject>

2.3 Example Usage

The following example can be used to set up a negotiation context and load it with a set of ABAC
credentials. The first four commands create a context and then add generic ProtoGENI policy:

./create.sh geni

./add.sh geni crypto/p-geni-admin.b64
./add.sh geni crypto/p-geni-all.b64
./add.sh geni crypto/p-geni-user.b64

Trying to create a sliver will fail at the point because the end-user credentials have not been added. The
following add end-user credentials.

./add.sh geni crypto/jjacobs-creator-hrn.b64
./add.sh geni crypto/alefiya-creator-hrn.b64

The ABAC perl client will perform and access request as follows.

./trust.sh geni geni creator \
“urn: [GeniUser: utahemulab.jjacobs, IDX: 11”7

Examples of the reference component manager are in the next section.

3. Reference Component Manager Tests

The reference component manager comes with test scripts in the test directory of the distribution.
This section explains example usage of the defauls python scripts.The examples below assume
the reference component manager has been installed at the machine host.protogeni-
abac.geni.emulab.net. Using the —d option on the script will print out extra debugging
information include the URIs which indicate explicitly which core framework component is
called and its location.

3.1.1 GetVersion

To verify the that the reference component manager is operating properly, use the getversion.py script:
./getversion.py -d \
-m https://host.protogeni-abac.geni.emulab.net:443/protogeni/xmlrpc cm

The getversion.py script executed above will connect to a component manager at the specified URL and
return the version information. This is a useful command to verify that the reference-cm is installed and
running properly. If you receive an error check that the apache httpd is running as follows:

sudo /etc/init.d/httpd status
The daemon can be started using the start argument:

sudo /etc/init.d/httpd start

3.1.2 Discover

Once the reference-cm operation has been confirmed by using getversion.py, the discover.py script can be
used to discover the rescources provided by the reference component manager.

./discover.py \
-m https://host.protogeni-abac.geni.emulab.net:443/protogeni/xmlrpc \
> advert.rspec

The discover.py command queries the component manager for available resources and returns them in the
form of an RSPEC.

https://host.protogeni-abac.geni.emulab.net/protogeni/xmlrpc

3.1.3 CreateSliver
In order to create a new rspec file in my.rspec similar to the following:

<?xml version="1.0" encoding="UTF-8"7?>
<rspec xmlns="http://www.protogeni.net/resources/rspec/0.1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.protogeni.net/resources/rspec/0.1
http://www.protogeni.net/resources/rspec/0.1/request.xsd"
type="request">
<node component uuid="urn:publicid:IDN+host.protogeni-
abac.geni.emulab.net+node+pcl"”
component manager uuid="urn:publicid:IDN+host.protogeni-
abac.geni.emulab.net+authority+cm"
virtual id="pcl"
virtualization type="emulab-vnode"
exclusive="1">
<node type type name="pc" type slots="1"/>
<interface virtual id="control"/>
</node>
</rspec>
Using one or more nodes listed in the discovery rspec advertised in the results of the previous section,
change the node and cm references as necessary. Then use the following command to create the sliver:

./createsliver.py -d -n abac \
-m https://host.protogeni-abac.geni.emulab.net:443/protogeni/xmlrpc/cm \
my.rspec

3.1.4 Delete Slice

To delete the sliver, reuse the rspec file for invoking the createsliver script.

./deleteslice.py -d -n abac \
-m https://host.protogeni-abac.geni.emulab.net:443/protogeni/xmlrpc/cm

https://host.protogeni-abac.geni.emulab.net/protogeni/xmlrpc/cm
https://host.protogeni-abac.geni.emulab.net/protogeni/xmlrpc/cm

